If this is balancing them its 4H+1NH —> 1H+NH4
<h3>Answer;</h3>
= 13.629 g of ZnCl2
<h3><u>Explanation;</u></h3>
The equation for the reaction.
Zn(s)+2HCL(aq)=>ZnCl2(aq)+H2(g)
Number of moles of Zinc;
Moles = mass/RAM
= 6.5 g/65g/mol
= 0.1 moles
The mole ration of Zn : ZnCl2 is 1 : 1
Therefore, number of moles of ZnCl2 is 0.1 moles
Mass = moles × Molar mass
= 0.1 ×136.286 g/mol
<u> = 13.629 g</u>
Answer:
The mole fraction of N₂ is 0.26.
Explanation:
The pressure exerted by a particular gas in a mixture is known as its partial pressure. So, Dalton's law states that the total pressure of a gas mixture is equal to the sum of the pressures that each gas would exert if it were alone:
PT = PA + PB
This relationship is due to the assumption that there are no attractive forces between the gases.
Dalton's partial pressure law can also be expressed in terms of the mole fraction of the gas in the mixture. The mole fraction is a dimensionless quantity that expresses the ratio of the number of moles of a component to the number of moles of all the components present.
So in a mixture of two or more gases, the partial pressure of gas A can be expressed as:
PA = XA * PT
In this case:
- PA= PN₂= 300 torr
- XA=XN₂= ?
- PT= 1.50 atm= 1140 torr (being 1 atm= 760 torr)
Replacing:
300 torr= XN₂*1140 torr
Solving:

XN₂= 0.26
<u><em>The mole fraction of N₂ is 0.26.</em></u>
Answer:
B. It shows the ratio of elements in the compound.
Explanation:
Empirical formula tells about the ration of the elements found in the compound . The ratio are in complete number .
For example the molecular formula of glucose is C₆ H₁₂O₆
Its empirical formula = CH₂O