Answer:
When considering phase changes, the closer molecules are to one another, the stronger the intermolecular forces. Good! For any given substance, intermolecular forces will be greatest in the solid state and weakest in the gas state.
In the case of melting, added energy is used to break the bonds between the molecules. ... If heat is coming into a substance during a phase change, then this energy is used to break the bonds between the molecules of the substance. The example we will use here is ice melting into water.
Answer:
1: At temperatures below 542.55 K
2: At temperatures above 660 K
Explanation:
Hello there!
In this case, according to the thermodynamic definition of the Gibbs free energy, it is possible to write the following expression:

Whereas ΔG=0 for the spontaneous transition. In such a way, we proceed as follows:
1:

It means that at temperatures lower than 542.55 K the reaction will be spontaneous.
2:

It means that at temperatures higher than 660 K the reaction will be spontaneous.
Best regards!
Answer:
frequency of light (f) = 1 x 10¹⁵s⁻¹
Explanation:
Given Data:
Wavelength of light λ = 3.0 x10⁻⁷m
Frequency of light: to be calculated
Formula Used to find frequency:
f = V/λ ........................... (1)
where
f is the frequency
V is the velocity
λ is wavelength
Velocity of light = 3 x 10⁸ ms⁻¹
put the values in equation (1)
f = 3 x 10⁸ ms⁻¹ / 3.0 x10⁻⁷m
f = 1 x 10¹⁵s⁻¹
So the frequency of light = 1 x 10¹⁵s⁻¹
Answer:
21.182 g
Explanation:
There are about (6.0)(10^23) atoms in one mole of a substance, so the given sample has about 0.333 mol of Cu.
The atomic mass of Cu is 63.546 g/mol, meaning that the answer is about <u>21.182</u><u> </u><u>g</u>