1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Katarina [22]
4 years ago
5

Two planets P1 and P2 orbit around a star S in circular orbits with speeds v1 = 40.2 km/s, and v2 = 56.0 km/s respectively. If t

he period of the first planet P1 is 750 years what is the mass, in kg, of the star it orbits around?
Physics
1 answer:
Readme [11.4K]4 years ago
4 0

Answer: 3.66(10)^{33}kg

Explanation:

We are told both planets describe a circular orbit around the star S. So, let's approach this problem begining with the angular velocity \omega of the planet P1 with a period T=750years=2.36(10)^{10}s:

\omega=\frac{2\pi}{T}=\frac{V_{1}}{R} (1)

Where:

V_{1}=40.2km/s=40200m/s is the velocity of planet P1

R is the radius of the orbit of planet P1

Finding R:

R=\frac{V_{1}}{2\pi}T (2)

R=\frac{40200m/s}{2\pi}2.36(10)^{10}s (3)

R=1.5132(10)^{14}m (4)

On the other hand, we know the gravitational force F between the star S with mass M and the planet P1 with mass m is:

F=G\frac{Mm}{R^{2}} (5)

Where G is the Gravitational Constant and its value is 6.674(10)^{-11}\frac{m^{3}}{kgs^{2}}

In addition, the centripetal force F_{c} exerted on the planet is:

F_{c}=\frac{m{V_{1}}^{2}}{R^{2}} (6)

Assuming this system is in equilibrium:

F=F_{c} (7)

Substituting (5) and (6) in (7):

G\frac{Mm}{R^{2}}=\frac{m{V_{1}}^{2}}{R^{2}} (8)

Finding M:

M=\frac{V^{2}R}{G} (9)

M=\frac{(40200m/s)^{2}(1.5132(10)^{14}m)}{6.674(10)^{-11}\frac{m^{3}}{kgs^{2}}} (10)

Finally:

M=3.66(10)^{33}kg (11) This is the mass of the star S

You might be interested in
Write a hypothesis why the moon has very little liquid water.
Llana [10]
Because the Moon has a very small surface area compared to other spacial geo-bodies, it has cooled down much faster than Earth. Any water on the moon would freeze.
6 0
3 years ago
A baseball, which has a mass of 0.685 kg., is moving with a velocity of 38.0 m/s when it contacts the baseball bat duringwhich t
Evgen [1.6K]

Answers:

a) 65.075 kgm/s

b) 10.526 s

c) 61.82 N

Explanation:

<h3>a) Impulse delivered to the ball</h3>

According to the Impulse-Momentum theorem we have the following:

I=\Delta p=p_{2}-p_{1} (1)

Where:

I is the impulse

\Delta p is the change in momentum

p_{2}=mV_{2} is the final momentum of the ball with mass m=0.685 kg and final velocity (to the right) V_{2}=57 m/s

p_{1}=mV_{1} is the initial momentum of the ball with initial velocity (to the left) V_{1}=-38 m/s

So:

I=\Delta p=mV_{2}-mV_{1} (2)

I=\Delta p=m(V_{2}-V_{1}) (3)

I=\Delta p=0.685 kg (57 m/s-(-38 m/s)) (4)

I=\Delta p=65.075 kg m/s (5)

<h3>b) Time </h3>

This time can be calculated by the following equations, taking into account the ball undergoes a maximum compression of approximately 1.0 cm=0.01 m:

V_{2}=V_{1}+at (6)

V_{2}^{2}=V_{1}^{2}+2ad (7)

Where:

a is the acceleration

d=0.01 m is the length the ball was compressed

t is the time

Finding a from (7):

a=\frac{V_{2}^{2}-V_{1}^{2}}{2d} (8)

a=\frac{(57 m/s)^{2}-(-38 m/s)^{2}}{2(0.01 m)} (9)

a=90.25 m/s^{2} (10)

Substituting (10) in (6):

57 m/s=-38 m/s+(90.25 m/s^{2})t (11)

Finding t:

t=1.052 s (12)

<h3>c) Force applied to the ball by the bat </h3>

According to Newton's second law of motion, the force F is proportional to the variation of momentum  \Delta p in time  \Delta t:

F=\frac{\Delta p}{\Delta t} (13)

F=\frac{65.075 kgm/s}{1.052 s} (14)

Finally:

F=61.82 N

6 0
3 years ago
Read 2 more answers
Determine a valid way of finding the wire’s diameter if you know the resistivity of the material, \rho , and can measure the cur
olganol [36]

Answer:

To find the diameter of the wire, when the following are given:

Resistivity of the material (Rho), Current flowing in the conductor, I, Potential difference across the conductor ends, V, and length of the wire/conductor, L.

Using the ohm's law,

Resistance R = (rho*L)/A

R = V/I.

Crossectional area of the wire A = π*square of radius

Radius = sqrt(A/π)

Diameter = Radius/2 = [sqrt(A/π)]

Making A the subject of the formular

A = (rho* L* I)V.

From the result of A, Diameter can be determined using

Diameter = [sqrt(A/π)]/2. π is a constant with the value 22/7

Explanation:

Error and uncertainty can be measured varying the value of the parameters used and calculating different values of the diameters. Compare the values using standard deviation

7 0
3 years ago
Capacitor C1 is initially charged to V1 and capacitor C2 is initially charged to V2. The capacitors are then connected to each o
o-na [289]

Answer:

<em>20.08 Volts</em>

Explanation:

<u>Parallel Connection of Capacitors</u>

The voltage across any two elements connected in parallel is the same. If the elements are capacitors, then each voltage is

\displaystyle V_1=\frac{Q_1}{C_1}

\displaystyle V_2=\frac{Q_2}{C_2}

They are both the same after connecting them, thus

\displaystyle \frac{Q_2}{C_2}=\frac{Q_1}{C_1}

Or, equivalently

\displaystyle Q_2=\frac{C_2Q_1}{C_1}

The total charge of both capacitors is

\displaystyle Q_t=Q_1\left(1+\frac{C_2}{C_1}\right)

We can compute the total charge by using the initial conditions where both capacitors were disconnected:

Q_t=V_{10}C_1+V_{20}C_2=25\cdot 24+13\cdot 11=743\ \mu C

Now we compute Q1 from the equation above

\displaystyle Q_1=\frac{Q_t}{\left(1+\frac{C_2}{C_1}\right)}=\frac{743}{\left(1+\frac{13}{24}\right)}=481.95\ \mu C

The final voltage of any of the capacitors is

\displaystyle V_1=V_2=\frac{481.95}{24}=20.08\ V

7 0
3 years ago
How to rearrange the formula f = ma and solve for m
GuDViN [60]
F /a = m


is the answer
7 0
3 years ago
Read 2 more answers
Other questions:
  • Brainliest and 100 POINTS
    7·2 answers
  • A sled is pushed with 30 Newtons and sliding friction is 10 Newtons find the net force on the sled​
    10·1 answer
  • Two campers dock a canoe. One camper has a mass of 100.0 kg and moves forward at 3.0 m/s as he leaves the canoe to step onto the
    15·1 answer
  • 5) Choose the correct statement about the waves shown below.
    13·1 answer
  • A violin has a string of length
    10·2 answers
  • In the final situation below, the 8.0 kg box has been launched with a speed of 10.0 m/s across a frictionless surface. Find the
    12·1 answer
  • Can somone pls help me??!! i’m very stuck
    6·1 answer
  • A light, flexible rope is wrapped several times around a hollow cylinder with a weight of 40 N and a radius of 0.25m that rotate
    6·1 answer
  • What is the melting point of sand
    13·1 answer
  • What is the weight of a 63.7 kg person? ?N
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!