It is transferred by direct contact, say you touched it, you would feel the heat
Answer:
A. h = 2.15 m
B.
Pb' = 122 KPa
Explanation:
The computation is shown below:
a) Let us assume the depth be h
As we know that

After solving this,
h = 2.15 m
Therefore the depth of the fluid is 2.15 m
b)
Given that
height of the extra fluid is

h' = 0.355 m
Now let us assume the pressure at the bottom is Pb'
so, the equation would be

Pb' = 122 KPa
Answer:
The smallest distance the student that the student could be possibly be from the starting point is 6.5 meters.
Explanation:
For 2 quantities A and B represented as
and 
The sum is represented as
For the the values given to us the sum is calculated as

Now the since the uncertainity inthe sum is 
The closest possible distance at which the student can be is obtained by taking the negative sign in the uncertainity
Thus closest distance equals
meters
Answer:
0.000507 kg/m
Explanation:
L = Length of string
T = Tension
= Mass density of string
E denotes the E string
D denotes the D String
Frequency is given by

So


The mass density of the E string is 0.000507 kg/m
Answer:
4.6 
Explanation:
Since the table is frictionless, there is no force of dynamic friction between table an block when the horizontal force is applied to it on Earth. Exactly the same is true when the table is taken to the Moon. Therefore, the Net Force acting on the object in both cases when the object accelerates, is the external horizontal force.
Notice that on Earth and on the Moon, the weight of the object (vertical and pointing up) is compensated by the normal force of the table on the object (pointing up and of the same magnitude as the weight) that precludes movement in the vertical direction. So in both cases, its acceleration will only be due to the horizontal force.
We use the equation for Net Force to find the mass of the object:

We use this mass (since the mass of the object is a constant independent of where the object is) to find the acceleration the object will experience when the 20 N horizontal force is applied on it on the Moon:
