<h2>
The current rotational period of that star is 10.01 hours.</h2>
Explanation:
Given that,
Initial angular velocity of the star, 
It decelerates, final angular speed, 
Deceleration, 
It is not required to use the rotational kinematics formula. The angular velocity in terms of time period is given by :

T is current rotational period of that star


T = 36036.03 second
or
1 hour = 3600 seconds
So, T = 10.01 hours
So, the current rotational period of that star is 10.01 hours. Hence, this is the required solution. Hence, this is the required solution.
T = (v-0)/a
t = (45.5)/(9.8)
= 4.64m/s.
hope this helps :)
Answer:
D
Explanation:
We must never use a piece of pipe as a leverage extension on the handle on a wrench.
Hence option d is correct.
The wavelength of the third line in the Lyman series, and identify the type of EM radiation
In this series, the spectral lines are obtained when an electron makes a transition from any high energy level (n=2,3,4,5... ). The wavelength of light emitted in this series lies in the ultraviolet region of the electromagnetic spectrum.
1 / lambda = R(h)* (
-
)
= 109678 (
-
)
= 109678 (8/9)
Lambda = 9 / (109678 * 8 )
= 102.6 *
m = 102.6 nm
To learn more about Lyman series here
brainly.com/question/5762197
#SPJ4