Answer: 1175 J
Explanation:
Hooke's Law states that "the strain in a solid is proportional to the applied stress within the elastic limit of that solid."
Given
Spring constant, k = 102 N/m
Extension of the hose, x = 4.8 m
from the question, x(f) = 0 and x(i) = maximum elongation = 4.8 m
Work done =
W = 1/2 k [x(i)² - x(f)²]
Since x(f) = 0, then
W = 1/2 k x(i)²
W = 1/2 * 102 * 4.8²
W = 1/2 * 102 * 23.04
W = 1/2 * 2350.08
W = 1175.04
W = 1175 J
Therefore, the hose does a work of exactly 1175 J on the balloon
Answer:
= 1000 hours
Explanation:
Earth's circumference is 10⁴ mile
speed of a sailboat is 10¹ mile/hour
distance = speed × time
10⁴ = 10¹ × t
t = 10⁴ / 10¹
t = 10³
= 1000 hours
1/2 x 240 x 64 = 120 X 64 = 7680 J
To solve this problem we will use the trigonometric concepts to find the distance h, which will allow us to find the speed of Jeff and that will finally be the variable that will indicate the total tension, since it is the variable of the centrifugal Force given in the vine at the lowest poing of the swing.
From the image:


When Jeff reaches his lowest point his potential energy is converted to kinetic energy





Tension in the string at the lowest point is sum of weight of Jeff and the his centripetal force




Therefore the tension in the vine at the lowest point of the swing is 842.49N