Answer: 0.258 N
Explanation:
As the density of the object is much less than the density of water, it’s clear that the buoyant force, is greater than the weight of the object, which means that in normal conditions, it would float in water.
So, in order to get the ball submerged in water, we need to add a downward force, that add to the weight, in order to compensate the buoyant force, as follows:
F = Fb – Fg
Fb= δH20* 4/3*π*(d/2)³ * g
Fg = δb* 4/3*π*(d/2)³ *g
F= (δH20- δb) * 4/3*π*(d/2)³*g
Replacing by the values of the densities, and the ball diameter, we finally get:
F= 0.258 N
Answer: A if thats not right its C
Explanation:
In theory, yes. The 2 problems are the materials used for clinical thermometers, & the temperature capacity of the clinical thermometer. If anything, change the material & extend the measurement threshold. At that point, it wouldn´t be used for clinical garbage anymore.
156 is the answer. so 156.25 is almost the same thing, you just round. It's not hard. Thank you!!!
Answer:
The moon's orbit draws the oceans to it, which triggers ocean tides. Force produces stars and planets by gathering the mass from which it exists.
Explanation:
The moon's orbit draws the oceans to it, which triggers ocean tides. Force produces stars and planets by gathering the mass from which it exists.
Answer is above
<em><u>Hope this helps.</u></em>