Answer:
Thank you so much!!!!
Explanation:
I really need this points
Answer:
Option D.
Value cannot be calculated without knowing the speed of the train
Explanation:
The speed of the beam can only be calculated accurately when the speed of the train is put into consideration. Based of the theory of relativity, the observer is on the ground, and the train is moving with the beam of light inside it. This causes a variation in the reference frames when making judgements of the speed of the beam. The speed of the beam will be more accurate if the observer is moving at the same sped of the train, or the train is stationary.
To get the correct answer, we have to subtract the speed of the train from the speed calculated.
Answer:
The heat capacity for the second process is 15 J/K.
Explanation:
Given that,
Work = 100 J
Change temperature = 5 k
For adiabatic process,
The heat energy always same.


We need to calculate the number of moles and specific heat
Using formula of heat


Put the value into the formula


We need to calculate the heat
Using formula of heat

Put the value into the formula


We need to calculate the heat capacity for the second process
Using formula of heat

Put the value into the formula



Hence, The heat capacity for the second process is 15 J/K.
Answer:
w = √[g /L (½ r²/L2 + 2/3 ) ]
When the mass of the cylinder changes if its external dimensions do not change the angular velocity DOES NOT CHANGE
Explanation:
We can simulate this system as a physical pendulum, which is a pendulum with a distributed mass, in this case the angular velocity is
w² = mg d / I
In this case, the distance d to the pivot point of half the length (L) of the cylinder, which we consider long and narrow
d = L / 2
The moment of inertia of a cylinder with respect to an axis at the end we can use the parallel axes theorem, it is approximately equal to that of a long bar plus the moment of inertia of the center of mass of the cylinder, this is tabulated
I = ¼ m r2 + ⅓ m L2
I = m (¼ r2 + ⅓ L2)
now let's use the concept of density to calculate the mass of the system
ρ = m / V
m = ρ V
the volume of a cylinder is
V = π r² L
m = ρ π r² L
let's substitute
w² = m g (L / 2) / m (¼ r² + ⅓ L²)
w² = g L / (½ r² + 2/3 L²)
L >> r
w = √[g /L (½ r²/L2 + 2/3 ) ]
When the mass of the cylinder changes if its external dimensions do not change the angular velocity DOES NOT CHANGE