Answer:
1. 75N
2. 67,983 J (=67.98 kJ)
Explanation:
1. Work = Force x Distance
we are given that Work = 1,500J and Distance = 20m
hence,
Work = Force x Distance
1,500 = Force x 20
Force = 1,500 ÷ 20 = 75N
2. Potential Energy, PE = mass x gravity x change in height
we are given that mass = 165 kg and change in height = 42m
assuming that gravity, g = 9.81 m/s²
Potential Energy, PE = mass x gravity x change in height
Potential Energy, PE = 165 x 9.81 x 42 = 67,983 J (=67.98 kJ)
1) <span>The function of the electron transport chain is to pump protons in the mitochondrion inter-membrane, thus building up a proton gradient. This gradient will allow the ATP syntheses</span><span>.</span>
2) Why we need oxygen for the electron transport chain:
At the end of the electron transport chain is the Oxygen that will accept
electrons and picks up protons to form water. If the oxygen molecule is not there the electron transport chain
will stop running, and ATP will no longer be produced. Basically, we need the oxygen to produce more ATP.
Answer:
The high of the ramp is 2.81[m]
Explanation:
This is a problem where it applies energy conservation, that is part of the potential energy as it descends the block is transformed into kinetic energy.
If the bottom of the ramp is taken as a potential energy reference point, this point will have a potential energy value equal to zero.
We can find the mass of the box using the kinetic energy and the speed of the box at the bottom of the ramp.
![E_{k}=0.5*m*v^{2}\\\\where:\\E_{k}=3.8[J]\\v = 2.8[m/s]\\m=\frac{E_{k}}{0.5*v^{2} } \\m=\frac{3.8}{0.5*2.8^{2} } \\m=0.969[kg]](https://tex.z-dn.net/?f=E_%7Bk%7D%3D0.5%2Am%2Av%5E%7B2%7D%5C%5C%5C%5Cwhere%3A%5C%5CE_%7Bk%7D%3D3.8%5BJ%5D%5C%5Cv%20%3D%202.8%5Bm%2Fs%5D%5C%5Cm%3D%5Cfrac%7BE_%7Bk%7D%7D%7B0.5%2Av%5E%7B2%7D%20%7D%20%5C%5Cm%3D%5Cfrac%7B3.8%7D%7B0.5%2A2.8%5E%7B2%7D%20%7D%20%5C%5Cm%3D0.969%5Bkg%5D)
Now applying the energy conservation theorem which tells us that the initial kinetic energy plus the work done and the potential energy is equal to the final kinetic energy of the body, we propose the following equation.
![E_{p}+W_{f}=E_{k}\\where:\\E_{p}= potential energy [J]\\W_{f}=23[J]\\E_{k}=3.8[J]\\](https://tex.z-dn.net/?f=E_%7Bp%7D%2BW_%7Bf%7D%3DE_%7Bk%7D%5C%5Cwhere%3A%5C%5CE_%7Bp%7D%3D%20potential%20energy%20%5BJ%5D%5C%5CW_%7Bf%7D%3D23%5BJ%5D%5C%5CE_%7Bk%7D%3D3.8%5BJ%5D%5C%5C)
And therefore
![m*g*h + W_{f}=3.8\\ 0.969*9.81*h - 23= 3.8\\h = \frac{23+3.8}{0.969*9.81}\\ h = 2.81[m]](https://tex.z-dn.net/?f=m%2Ag%2Ah%20%2B%20W_%7Bf%7D%3D3.8%5C%5C%200.969%2A9.81%2Ah%20-%2023%3D%203.8%5C%5Ch%20%3D%20%5Cfrac%7B23%2B3.8%7D%7B0.969%2A9.81%7D%5C%5C%20h%20%3D%202.81%5Bm%5D)
Explanation:
some objects that are conduct :Metals conduct electricity, so if there is just the symbol of a metal, eg Mg(s), then it will conduct, even in the solid or liquid state. 2. Ionic compounds conduct when they are dissolved in water, or are melted.
what can it do ?:
A conductor is a material which electricity, heat or sound can flow through. An electrical conductor conducts electricity. ... This means that they make it very hard for electricity to flow through them. A material that stops electric current is called an insulator (electricity).
hope this helped! if not I'll answer again