Speed
= (distance covered) / (time to cover the distance)
= (25 m) / (5.0 sec) = 5.0 m/s .
Fine, lets do a retry of this.
Δd = -0.9m
v₁ = 0
v₂ = ?
a = -9.8 m/s²
Δt = ?
We can use the following kinematic equation and solve for Δt.
Δd = v₁Δt + 0.5(a)(Δt)²
Δd = 0.5(a)(Δt)²
2Δd = a(Δt)²
√2Δd/a = Δt
√2(-0.9m)/(-9.8 m/s²) = Δt
0.<u>4</u>28571428574048 = Δt
Therefore, it takes 0.4 seconds for the glass to hit the ground, or 0.43s as you said (even though I don't believe it follows significant digit rules)
Answer:
In a series circuit, how does the voltage supplied by the battery compare to the voltage on each load? The voltage of the battery is equal to the voltage of each load added together. ... The voltage across the two resistors must both have the same voltage of the battery.
Explanation:
<em>mark me</em><em> </em><em>as BRAINLIEST</em><em> </em>
<em>follow me</em><em> </em>
<em>carry on</em><em> </em><em>learning</em><em> </em>