Again I think you did not give the right constants. So I would use the correct constants for mass of moon and distance from earth to moon.
<span>The formula for force of attraction between any two bodies in the universe
F = GMm / r^2. (Newton's Universal law of Gravitation).
G = Universal gravitational constant, G = 6.67 * 10 ^ -11 Nm^2 / kg^2.
M = Mass of Earth. = 5.97 x 10^24 kg.
m = mass of moon = 7.34 x 10^22 kg.
r = distance apart, between centers = in this case it is the distance from Earth to the Moon
= 3.8 x 10^8 m.
(Sorry I could not assume with the values you gave, they are wrong, and if we use them we would be insulting Physics).
So F = ((6.67 * 10 ^ -11)*(5.97 x 10^24)*(7.34 * 10^22)) / (3.8 x 10^8)^2.
Punch it all up in your calculator.
I used a Casio 991 calculator, it should be one of the best in the world.Really lovely calculator, that has helped me a lot in computations like this. I am thankful for the Calculator.
F = 2.0240 * 10^ 20 N.
So that's our answer.
Hurray!!</span>
Answer:
Explanation:
Calories to be burnt = 3500 - 2500 = 1000 Cals .
Efficiency of conversion to mechanical work is 25 % .
Work needed to burn this much of Cals = 1000 x 100 / 25 = 4000 Cals.
4000 Cals = 4.2 x 4000 = 16800 J .
Work done in one jump = kinetic energy while jumping
= 1/2 m v²
= .5 x 70 x 3.3²
= 381.15 J .
Number of jumps required = 16800 / 381.15
= 44 .
Answer:
W = 0J
Explanation:
The work done by the dresser is described as
W = f d (cos θ)
F has been given as the weight of this dresser. And it is 3500 N
d = 0 m
When you put these values into the equation
W = 3500 x 0 x cosθ
W = 0 J
This value tells us that the work done on this dresser is zero. No work has been done. Therefore the last option answers the question.
<h3><u>A</u><u>n</u><u>s</u><u>w</u><u>e</u><u>r</u><u>:</u><u>-</u></h3>
- Energy Transferre=11KJ
- Efficiency=35%
<h3>☆Usefully transferred energy:-</h3>





