1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tatyana61 [14]
3 years ago
13

Why is a small crescent of light often observed on the moon when it is exactly in the new phase?

Physics
1 answer:
Lady bird [3.3K]3 years ago
5 0
Este suceso se llama Plenilunio. Es cuando la tierra esta en medio del sol y la luna.
You might be interested in
Corn plants and milkweed plants grow in the same area. Over several years, the milkweed plants have taken over the field and the
erma4kov [3.2K]

Weeds are very important agronomically because they reduce the yield of crops in three ways: by competing with the crop for water, light and nutrients, by interfering with crop harvest, and by contaminating harvested products with weed seeds and toxins. Weeds can reduce yield up to 50% and are responsible for millions of dollars in crop losses each year.

It’s biotic factor would be competition as Competition can be defined as an interaction between organisms or species, in which the fitness of one is lowered by the presence of another.

3 0
3 years ago
Read 2 more answers
A vehicle travels from a 30m marker to a 100m marker. What is the change in distance?
sesenic [268]
The change in distance is 30 because if you subtract both number you'll get 30
3 0
3 years ago
Read 2 more answers
Suppose you want to determine the resistance of a resistor that is nominally 100 . You should be able to apply 10 V across the r
Butoxors [25]

Answer:

a) For y = 102 mA, R = 98.039 ohms

For y = 97 mA, R = 103.09 ohms

b) Check explanatios for b

Explanation:

Applied voltage, V = 10 V

For the first measurement, current y_{1} = 102 mA = 0.102 A

According to ohm's law, V = IR

R = V/I

Here, I = y_{1}

R = \frac{V}{y_{1} } \\R = \frac{10}{0.102} \\R = 98.039 ohms

For the second measurement, current y_{2} = 97 mA = 0.097 A

R = \frac{V}{y_{2} }

R = \frac{10}{0.097} \\R = 103 .09 ohms

b) y = \left[\begin{array}{ccc}y_{1} &y_{2} \end{array}\right] ^{T}

y = \left[\begin{array}{ccc}y_{1} \\y_{2} \end{array}\right]

y = \left[\begin{array}{ccc}102*10^{-3} \\97*10^{-3}  \end{array}\right]

A linear equation is of the form y = Gx

The nominal value of the resistance = 100 ohms

x = \left[\begin{array}{ccc}100\end{array}\right]

\left[\begin{array}{ccc}102*10^{-3} \\97*10^{-3}  \end{array}\right] =  \left[\begin{array}{ccc}G_{1} \\G_{2}  \end{array}\right] \left[\begin{array}{ccc}100\end{array}\right]\\\left[\begin{array}{ccc}G_{1} \\G_{2}  \end{array}\right] =  \left[\begin{array}{ccc}102*10^{-5} \\97*10^{-5}  \end{array}\right]

3 0
3 years ago
an airplane is traveling at an altitude of 31,360. a box of supplies is driped from the cargo hold how long will it take to reac
VMariaS [17]

Answer: 1,600 seconds

Explanation:

31,360/9.8 = 3,200.

Then divide 3,200/2 = 1,600

7 0
3 years ago
A thermistor is placed in a 100 °C environment and its resistance measured as 20,000 Ω. The material constant, β, for this therm
Karo-lina-s [1.5K]

Answer:

the thermistor temperature = 325.68 \ ^0 \ C

Explanation:

Given that:

A thermistor is placed in a 100 °C environment and its resistance measured as 20,000 Ω.

i.e Temperature

T_1 = 100^0C\\T_1 = (100+273)K\\\\T_1 = 373\ K

Resistance of the thermistor R_1 = 20,000 ohms

Material constant \beta = 3650

Resistance of the thermistor R_2 = 500 ohms

Using the equation :

R_1 = R_2  \ e^{\beta} (\frac{1}{T_1}- \frac{1}{T_2})

\frac{R_1}{ R_2} =   \ e^{\beta} (\frac{1}{T_1}- \frac{1}{T_2})

Taking log of both sides

In \ \frac{R_1}{ R_2} = In \  \ e^{\beta} (\frac{1}{T_1}- \frac{1}{T_2})

In \ \frac{R_1}{ R_2} = {\beta} (\frac{1}{T_1}- \frac{1}{T_2})

\frac{ In \ \frac{R_1}{ R_2}}{ {\beta}} = (\frac{1}{T_1}- \frac{1}{T_2})

\frac{1}{T_2} =   \frac{1}{T_1}  -          \frac{ In \ \frac{R_1}{ R_2}}{ {\beta}}

{T_2} =  \frac{\beta T_1}{\beta - In (\frac{R_1}{R_2})T}

Replacing our values into the above equation :

{T_2} =  \frac{3650*373}{3650 - In (\frac{20000}{500})373}

{T_2} =  \frac{1361450}{3650 - 3.6888*373}

{T_2} =  \frac{1361450}{3650 - 1375.92}

{T_2} =  \frac{1361450}{2274.08}

{T_2} = 598.68 \ K

{T_2} = 325.68 \ ^0 \ C

Thus, the thermistor temperature = 325.68 \ ^0 \ C

4 0
3 years ago
Other questions:
  • A pipe open at both ends resonates at a fundamental frequency fopen. When one end is covered and the pipe is again made to reson
    9·1 answer
  • What happens to the strength of the magnetic field as you come closer to the current carrying wire?
    9·1 answer
  • When you share photos on sites like Pinterest and​ Instagram, you may be participating in research that tracks consumption patte
    8·1 answer
  • What is the enthalpy change, ΔH, for this reaction? Show your work.
    14·2 answers
  • The ideal mechanical advantage of a machine reflects the increase or decrease in force there world be without friction, it is al
    15·1 answer
  • 2 examples of where ground water comes from
    5·2 answers
  • A tree performing photosynthesis is an example of _____________
    11·1 answer
  • A. even though our car is 10 years old, it has never broken down.
    12·1 answer
  • If the purpose of electronic monitoring is to control offenders, it is a _____(1)_____, but if the purpose is to reintegrate off
    13·1 answer
  • 1. Fill in the blank(s):<br> force mass x
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!