Answer:

Explanation:
Given:
- mass of John,

- mass of William,

- length of slide,

(A)
height between John and William, 
<u>Using the equation of motion:</u>

where:
v_J = final velocity of John at the end of the slide
u_J = initial velocity of John at the top of the slide = 0
Now putting respective :


<u>Now using the law of conservation of momentum at the bottom of the slide:</u>
<em>Sum of initial momentum of kids before & after collision must be equal.</em>

where: v = velocity with which they move together after collision

is the velocity with which they leave the slide.
(B)
- frictional force due to mud,

<u>Now we find the force along the slide due to the body weight:</u>



<em><u>Hence the net force along the slide:</u></em>

<em>Now the acceleration of John:</em>



<u>Now the new velocity:</u>



Hence the new velocity is slower by

Its a thermometer . i hope this helps you
The chicken's eggs are fertilized interally
Answer:
E. Zero Maximum
Explanation:
At the point of maximum displacement, the speed is zero while the restoring force is maximum. In fact:
- The restoring force is given by
, where k is the spring constant and x is the displacement - at the point of maximum displacement, x is maximum, so F is maximum as well
- the total energy of the system is sum of kinetic energy and elastic potential energy:

where m is the mass of the system and v is the speed. Since E (the total energy) is constant due to the law of conservation of energy, we have that when K increases, U decreases, and viceversa. As a result, when x increases, v decreases, and viceversa. At the point of maximum displacement, x is maximum, so v will have its minimum value (which is zero, since the system is changing direction of motion).