<u> There are more total ions in 2.2 moles of </u>
<h3>What are ions?</h3>
Ion, any atom or group of atoms that bears one or more positive or negative electrical charges. Positively charged ions are called cations; negatively charged ions, anions.
Ions are formed by the addition of electrons to, or the removal of electrons from, neutral atoms or molecules or other ions; by combination of ions with other particles; or by rupture of a covalent bond between two atoms in such a way that both of the electrons of the bond are left in association with one of the formerly bonded atoms.
Examples of these processes include the reaction of a sodium atom with a chlorine atom to form a sodium cation and a chloride anion; the addition of a hydrogen cation to an ammonia molecule to form an ammonium cation; and the dissociation of a water molecule to form a hydrogen cation and a hydroxide anion.
Learn more about ions
brainly.com/question/13692734
#SPJ4
Answer:
a)23.2 L
b)68.3kPa
c)7.5 atm
d)60.5L
e)1.67 atm
Explanation:
From Boyle's law:
P1V1=P2V2
P1= 748mmHg
P2=725mmHg
V1= 22.5L
V2??
V2= P1V1/P2= 748×22.5/725= 23.2 L
b)
V1=4.0L
P1= 205×10^3Pa
V2= 12.0L
P2=???
P2= P1V1/V2= 205×10^3×4/12
P2= 68.3×10^3 Pa or 68.3kPa
c)
P1= 1 atm
V1= 196.0L
P2= ??
V2= 26.0L
P2= P1V1/V2=1×196.0/26.0
P2= 7.5 atm
d)
V1= 40.0L
P1= 12.7×10^3Pa
V2=???
P2= 8.4×103Pa
V2= P1V1/P2= 12.7×10^3×40.0/8.4×103
V2=60.5L
e)
V1= 100mL
P1= 1atm
V2= 60mL
P2=???
P2= P1V1/V2= 1×100/60
P2= 1.67 atm
Answer: 9.09 %
Explanation:
To calculate the percentage concentration by volume, we use the formula:
Volume of ethanol (solute) = 30 ml
Volume of water (solvent) = 300 ml
Volume of solution= volume of solute + volume of solution = 30+ 300 = 330 ml
Putting values in above equation, we get:
Hence, the volume percent of solution will be 9.09 %.
Answer : The concentration of
and
are
and
respectively.
Solution : Given,
pH = 4.10
pH : pH is defined as the negative logarithm of hydronium ion concentration.
Formula used : ![pH=-log[H_3O^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH_3O%5E%2B%5D)
First we have to calculate the hydronium ion concentration by using pH formula.
![4.10=-log[H_3O^+]](https://tex.z-dn.net/?f=4.10%3D-log%5BH_3O%5E%2B%5D)
![[H_3O^+]=antilog(-4.10)](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%3Dantilog%28-4.10%29)
![[H_3O^+]=7.94\times 10^{-5}](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%3D7.94%5Ctimes%2010%5E%7B-5%7D)
Now we have to calculate the pOH.
As we know, 


Now we have to calculate the hydroxide ion concentration.
![pOH=-log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-log%5BOH%5E-%5D)
![9.9=-log[OH^-]](https://tex.z-dn.net/?f=9.9%3D-log%5BOH%5E-%5D)
![[OH^-]=antilog(-9.9)](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3Dantilog%28-9.9%29)
![[OH^-]=1.258\times 10^{-10}](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D1.258%5Ctimes%2010%5E%7B-10%7D)
Therefore, the concentration of
and
are
and
respectively.