Copper<span>(II) </span>oxide<span> or cupric </span>oxide<span> is the inorganic </span>compound<span> with the formula CuO. A black solid, it is one of the two stable </span>oxides<span> of </span>copper, the other being Cu2<span>O or cuprous </span>oxide<span>. As a mineral, it is known as tenorite and paramelaconite.</span>
<span>1. </span>To solve this we assume
that the gas is an ideal gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant temperature and number of moles of the gas
the product of PV is equal to some constant. At another set of condition of
temperature, the constant is still the same. Calculations are as follows:
P1V1 =P2V2
V2 = P1 x V1 / P2
V2 = 104.1 x 478 / 88.2
<span> V2 =564.17 cm^3</span>
Answer:
616,0 ng is the right answer.
Explanation:
You should know that 1 mole = 1 .10^9 nanomoles
Get the rule of three.
1 .10^9 nanomoles ...................... 56.0 gr
11 nanomoles .....................
(11 x 56) / 1 .10^9 nanomoles = 6.16 x 10^-7 gr
Let's convert
6.16 x 10^-7 gr x 1 .10^9 = 616 ngr
Dimitri Mendeleev was the first to put elements together on a table. He knew there were elements missing but he noticed a trend in some of the elements known at the time. Sodium, Lithium and other alkali metals all have the same properties so he put them under the same column and created other columns with similar attributes (Halogens, Noble gases, Alkaline earth metals). Over the years, new elements were discovered and put into the rough outline that Mendeleev created.
I hope that is about what you wanted.