Answer:As sunlight passes through the atmosphere, all UVC and most UVB is absorbed by ozone, water vapour, oxygen and carbon dioxide. UVA is not filtered as significantly by the atmosphere. Is there a connection between ozone depletion and UV radiation? Ozone is a particularly effective absorber of UV radiation.
Explanation:
I had old notes
If a ship will be sailing through warm and cold water, people think about making it less dense than the warmest water as they load the ship with cargo. I think you forgot to give the options along with the question. I hope that this is the answer that has actually come to your desired help.
Answer:
The third particle should be at 0.0743 m from the origin on the negative x-axis.
Explanation:
Let's assume that the third charge is on the negative x-axis. So we have:

We know that the electric field is:

Where:
- k is the Coulomb constant
- q is the charge
- r is the distance from the charge to the point
So, we have:

Let's solve it for r(3).
Therefore, the third particle should be at 0.0743 m from the origin on the negative x-axis.
I hope it helps you!
In 16 times
KE= o.5 m times V squared
Answer:
The frequency of the green light is 
Explanation:
The visible region is part of the electromagnetic spectrum, any radiation of that electromagnetic spectrum has a speed of
in the vacuum.
Green light is part of the visible region. Therefore, the frequency can be determined by the following equation:
(1)
Where c is the speed of light,
is the wavelength and
is the frequency.
Notice that since it is electromagnetic radiation, equation 1 can be used. Remember that light propagates in the form of an electromagnetic wave (that is a magnetic field perpendicular to an electric field).
Then,
can be isolated from equation 1
(2)
Notice that it is necessary to express the wavelength in units of meters.
⇒ 
Hence, the frequency of the green light is 