Explanation:
this is the ans hope it works
<em>A</em> - <em>B</em> = (10<em>i</em> - 2<em>j</em> - 4<em>k</em>) - (<em>i</em> + 7<em>j</em> - <em>k</em>)
<em>A</em> - <em>B</em> = 9<em>i</em> - 9<em>j</em> - 3<em>k</em>
|<em>A</em> - <em>B</em>| = √(9² + (-9)² + (-3)²) = √189 = 3√19
Divide the distance traveled by the time it took:
(100 m) / (4.2 s) ≈ 23.8 m/s
Answer:
This question will be answered based on general photosynthetic understanding. The answer is:
The production of oxygen would increase
Explanation:
The characteristics of most plant forms is their ability to photosynthesize i.e. use solar energy (from sunlight) to make food (chemical energy). The product of this photosynthetic process is OXYGEN gas, which is released as a waste product via the stomata on their leaves. Note that, photosynthesis cannot occur without LIGHT as it provides the energy needed for the process.
Hence, in the duckweed plant like every other photosynthetic plant, the increase in the intensity and duration of exposure to light means the rate at which photosynthesis occurs will be increased. An increased photosynthetic rate means the synthesis of the products will also be increased i.e. glucose and OXYGEN.
1. 12.75 J
Assuming that the force applied is parallel to the ramp, so it is parallel to the displacement of the cart, the work done by the force is

where
F = 15 N is the magnitude of the force
d = 85 cm = 0.85 m is the displacement of the cart
Substituting in the formula, we get

2. 10.6 N
In this part, the cart reaches the same vertical height as in part A. This means that the same work has been done (because the work done is equal to the gain in gravitational potential energy of the object: but if the vertical height reached is the same, then the gain in gravitational potential energy is the same, so the work done must be the same).
Therefore, the work done is

However, in this case the displacement is
d = 120 cm = 1.20 m
Therefore, the magnitude of the force in this case is
