Answer:
The depth of the water at this point is 0.938 m.
Explanation:
Given that,
At one point
Wide= 16.0 m
Deep = 3.8 m
Water flow = 2.8 cm/s
At a second point downstream
Width of canal = 16.5 m
Water flow = 11.0 cm/s
We need to calculate the depth
Using Bernoulli theorem

Put the value into the formula



Hence, The depth of the water at this point is 0.938 m.
The answer that best describe tropical continental is hot and sunny
Answer:
+5.7 m/s
Explanation:
According to the law of conservation of momentum is that the momentum before the collision is equal to the momentum after the collision. In an equation form it would look like this:
M₁V₁+M₂V₂ = M₁V₁'+M₂V₂'
Where:
M₁ = mass of object 1 (kg)
V₁ = velocity of object 1 before the collision (m/s)
V₁' = Final velocity of object 1 after the collision (m/s)
M₂ = mass of object 2 (kg)
V₂ = velocity of object 2 before the collision (m/s)
V₂' = Final velocity of object 2 after the collision (m/s)
According to your problem you have the following given:
M₁ = 5 g = 0.005kg
V₁ = 3 m/s
V₁' = -5m/s (It bounced off so it is going the other direction)
M₂ = 6g = 0.006kg
V₂ = -1 m/s (It is coming from the opposite direction of the 3-ball)
V₂' = ?
So we plug in what we know and solve for what we don't know.
