Answer:
distance stop 1.52m,
velocity 4.0 m/s y^
Explanation:
The movement of the particle is two-dimensional since it has acceleration in the x and y axes, the way to solve it is by working each axis independently.
a) At the point where the particle begins to return its velocity must be zero (Vfx = 0)
Vfₓ = V₀ₓ + aₓ t
t = - V₀ₓ/aₓ
t = - 2.4/(-1.9)
t= 1.26 s
At this time the particle stops, let's find his position
X1 = V₀ₓ t + ½ aₓ t²
X1= 2.4 1.26 + ½ (-1.9) 1.26²
X1= 1.52 m
At this point the particle begins its return
b) The velocity has component x and y
As a section, the X axis x Vₓ = 0 m/s is stopped, but has a speed on the y axis
Vfy= Voy + ay t
Vfy= 0 + 3.2 1.26
Vfy = 4.0 m/s
the velocity is
V = (0 x^ + 4.0 y^) m/s
c) In order to make the graph we create a table of the position x and y for each time, let's start by writing the equations
X = V₀ₓ t+ ½ aₓ t²
Y = Voy t + ½ ay t²
X= 2.4 t + ½ (-1.9) t²
Y= 0 + ½ 3.2 t²
X= 2.4 t – 0.95 t²
Y= 1.6 t²
With these equations we build the table to graph, for clarity we are going to make two distance graph with time, one for the x axis and another for the y axis
Chart to graph
Time (s) x(m) y(m)
0 0 0
0.5 0.960 0.4
1 1.45 1.6
1.50 1.46 3.6
2.00 1.00 6.4
A plane mirror always forms a virtual image. the image and the object are the same distance from a flat mirror, the image size is the same as the object, and the image is upright!
Answer:

Explanation:
We have,
Mass of a wrench, m₁ = 4 g = 0.004 kg
Speed of wrench, v₁ = -15 m/s
Mass of the Astronaut, m₂ = 70 kg
It is required to find Astronaut's velocity. Let it is v₂. Using the conservation of linear momentum to find it.

So, his velocity is
.
Answer:
Decreased by a factor of 4.5
Explanation:
"We have Newton formula for attraction force between 2 objects with mass and a distance between them:

where
is the gravitational constant on Earth.
are the masses of the object and Earth itself. and R distance between, or the Earth radius.
So when R is tripled and mass is doubled, we have the following ratio of the new gravity over the old ones:




Since
and 

So gravity would have been decreased by a factor of 4.5
Answer:
v = 6.06 m/s
Explanation:
In order for the rider to pass the top of the loop without falling, his weight must be equal to the centripetal force:

where,
v = minimum speed of motorcycle at top of the loop = ?
g = acceleration due to gravity = 9.8 m/s²
r = radius of the loop = diameter/2 = 7.5 m/2 = 3.75 m
Therefore, using these values in equation, we get:

<u>v = 6.06 m/s</u>