You add two equations together to eliminate a variable. This particular problem is nice, because it's already setup to eliminate X.
3x - 4y = 9
<span>-3x + 2y = 9
</span>
When we add these two together, 3x - 3x cancels each other out, leaving us with 0x, or nothing.
We continue with -4y + 2y (leaves us with -2y) and 9+9 (18).
-2y = 18
18/-2 = -9.
Now we have y = -9, and we can go back into the problems to solve for x.
<span>3x - 4(-9) = 9
</span>
3x + 36 = 9.
3x = -27
x = -9.
Confirm with the final equation:
-3(-9) + 2(-9) = 9
27 - 18 = 9
9 = 9 --- Confirmed.
9514 1404 393
Answer:
14.1 years
Step-by-step explanation:
Use the compound interest formula and solve for t. Logarithms are involved.
A = P(1 +r/n)^(nt)
amount when P is invested for t years at annual rate r compounded n times per year.
Using the given values, we have ...
13060 = 8800(1 +0.028/365)^(365t)
13060/8800 = (1 +0.028/365)^(365t) . . . . divide by P=8800
Now we take logarithms to make this a linear equation.
log(13060/8800) = (365t)log(1 +0.028/365)
Dividing by the coefficient of t gives us ...
t = log(13060/8800)/(365·log(1 +0.028/365)) ≈ 0.171461/0.0121598
t ≈ 14.1
It would take about 14.1 years for the value to reach $13,060.
The simplest form would be 13/50.
Hope it helped!!
Answer:
D)
Step-by-step explanation:
Answer:
No Solutions
Step-by-step explanation:
for |4x -3| + 10 < 2
|4x - 3| < -8
Not possible since absolute value is positive