Answer:
Explanation:Are You From Milo?
Answer:
[Cl2] equilibrium = 0.0089 M
Explanation:
<u>Given:</u>
[SbCl5] = 0 M
[SbCl3] = [Cl2] = 0.0546 M
Kc = 1.7*10^-3
<u>To determine:</u>
The equilibrium concentration of Cl2
<u>Calculation:</u>
Set-up an ICE table for the given reaction:

I 0 0.0546 0.0546
C +x -x -x
E x (0.0546-x) (0.0546-x)
![Kc = \frac{[SbCl3][Cl2]}{[SbCl5]}\\\\1.7*10^{-3} =\frac{(0.0546-x)^{2} }{x} \\\\x = 0.0457 M](https://tex.z-dn.net/?f=Kc%20%3D%20%5Cfrac%7B%5BSbCl3%5D%5BCl2%5D%7D%7B%5BSbCl5%5D%7D%5C%5C%5C%5C1.7%2A10%5E%7B-3%7D%20%3D%5Cfrac%7B%280.0546-x%29%5E%7B2%7D%20%7D%7Bx%7D%20%5C%5C%5C%5Cx%20%3D%200.0457%20M)
The equilibrium concentration of Cl2 is:
= 0.0546-x = 0.0546-0.0457 = 0.0089 M
Answer:
Region B, because the pressure inside the cylinder is equal to the vapor pressure of water at 80∘C when both liquid and gas phases are present.
Explanation:
As expansion occurs, liquid water evaporates reversibly, holding the pressure constant at the equilibrium vapor pressure of water at 80∘C(0.47atm) 80∘C (0.47 atm). When all of the liquid has evaporated, the pressure drops and follows the ideal gas law.
The last one is the answer to your question. D is the answer
<u>Answer:</u> The formation of given amount of oxygen gas results in the absorption of 713 kJ of heat.
<u>Explanation:</u>
To calculate the number of moles, we use the equation:

Given mass of oxygen gas = 83 g
Molar mass of oxygen gas = 32 g/mol
Putting values in above equation, we get:

For the given chemical equation:

<u>Sign convention of heat:</u>
When heat is absorbed, the sign of heat is taken to be positive and when heat is released, the sign of heat is taken to be negative.
By Stoichiometry of the reaction:
When 3 moles of oxygen gas is formed, the amount of heat absorbed is 824.2 kJ
So, when 2.594 moles of oxygen gas is formed, the amount of heat absorbed will be = 
Hence, the formation of given amount of oxygen gas results in the absorption of 713 kJ of heat.