The period of oscillation of the system is 12.56 s
Explanation:
The period of oscillation of a spring-mass system is given by

where
m is the mass attached to the spring
k is the spring constant
For the system in this problem, we have
m = 40 kg
k = 10 N/m
Substituting into the equation, we find

#LearnwithBrainly
Answer:
In a vacuum
Explanation:
Sound is a type of mechanical waves. Mechanical waves are waves that propagate through the oscillation of the particles in a medium, which can be either gas, liquid or solid.
A sound wave in air, for instance, is simply produced by the oscillations of the air particles back and forth along the direction of motion of the wave.
Given this definition, it is clear that mechanical waves (and so, sound waves as well) cannot be transmitted if there is no medium: therefore, they cannot be transmitted in a vacuum. So, the sound of the ringing bell would not be present in a vacuum.
During either one, the sun, moon, and Earth are lined up in the same straight line. The difference is whether the moon or the Earth is the one in the "middle".
Yes, it can be unicellular and multicellular
W = mg, Assuming g ≈ 9.8 m/s² on the earth surface.
735 N = m* 9.8
735/9.8 = m
75 = m
Mass , m = 75 kg. B.