Answer:
the horizontal distance is 4.355 meters
Explanation:
The computation of the horizontal distance while travelling in the air is shown below:
Data provided in the question is as follows
Velocity = u = 7.70 m/s
H = 1.60 m
R = horizontal direction
Based on the above information
As we know that
R = u × time
where,
Time = 
So,
= 
= 4.355 meters
hence, the horizontal distance is 4.355 meters
Reflection: a change in direction of a wave at a boundary between two different media.
sentence: i saw my reflection in the mirror.
refraction: the bending of light as it passes from one transparent substance into another.
sentence: when light goes through glass, it’s a refraction.
diffraction: the bending of waves around the corners of an obstacle.
sentence: spaced tracks on a CD act as a diffraction.
absorption: the process or action by which one thing absorbs or is absorbed by another.
sentence: heat waves hitting the beach usually give most of their energy to the sand.
interference: when two waves lay on each other and their energies are either added together or cancelled out.
sentence: interference waves can be observed with all types of waves.
standing wave: two waves moving in opposite directions. they both have the same amplitude or frequency.
sentence: plucking the string of a guitar is an example of standing waves.
resonance: increased amplitude that occurs when the frequency of a force is equal or close to a natural frequency.
sentence:a buzz in your car that only occurs at a certain speed is an example or resonance.
Answer:
Power output = 96.506 watts
Explanation:
Drag coefficient (Cd) = 0.9
V = 7.3 m/s
Air density (ρ) = 1.225 kg/m^(3)
Area (A) = 0.45 m^2
Let's find the drag force ;
Fd=(1/2)(Cd)(ρ)(A)(v^(2))
So Fd = (1/2)(0.9)(1.225)(0.45)(7.3^(2)) = 13.22N
Drag power = Drag Force x Drag velocity.
Thus drag power, = 13.22 x 7.3 = 96.506 watts
Answer:
The potential difference between the plates increases
Explanation:
As we know that the capacitance of the capacitor is given by:
(1)
where
q = charge
C = capacitance
V = Voltage or Potential Difference
Also, the capacitance of a parallel plate capacitor is given as:
(2)
where

A = Area of the plates
D = Separation distance between the plates
Now, from eqn (1) and (2):

Now, from the above eqn we can say that:
Potential difference depends directly on the separation distance between the plates of the capacitor and is inversely dependent on the area of the plates of the capacitor.
Therefore, after disconnecting, if the separation between the plates is increased the potential difference across it also increases.