Answer:
C. Takes heat in, does work, and loses energy heat.
Explanation:
Heat engine is a system makes use of thermal energy (heat) to in order to do mechanical work.
This occurs by converting the heat into mechanical energy. This energy is then used to do work.
The key characteristic of a heat engine is that the substance with which work is done by, goes from a higher temperature to a lower temperature.
Hence, it loses heat as it does work.
Answer:
The percentage of its mechanical energy does the ball lose with each bounce is 23 %
Explanation:
Given data,
The tennis ball is released from the height, h = 4 m
After the third bounce it reaches height, h' = 183 cm
= 1.83 m
The total mechanical energy of the ball is equal to its maximum P.E
E = mgh
= 4 mg
At height h', the P.E becomes
E' = mgh'
= 1.83 mg
The percentage of change in energy the ball retains to its original energy,
ΔE % = 45 %
The ball retains only the 45% of its original energy after 3 bounces.
Therefore, the energy retains in each bounce is
∛ (0.45) = 0.77
The ball retains only the 77% of its original energy.
The energy lost to the floor is,
E = 100 - 77
= 23 %
Hence, the percentage of its mechanical energy does the ball lose with each bounce is 23 %
Answer:
Metaphysics is the branch of philosophy that studies the fundamental nature of reality, the first principles of being, identity and change, space and time, causality, necessity, and possibility.
Explanation:
Just as physics deals with the laws that govern the physical world (such as those of gravity or the properties of waves), metaphysics describes what is beyond physics—the nature and origin of reality itself, the immortal soul, and the existence of a supreme being.
A recurring illness or an illness that lasts for a long time. Chronic illnesses are typically very hard to cure.
Answer:
va = 4.79 m/s
vb = 1.29 m/s
Explanation:
Momentum is conserved:
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
(3.00) (0) + (6.50) (3.50) = (3.00) v₁ + (6.50) v₂
22.75 = 3v₁ + 6.5v₂
For an elastic collision, kinetic energy is conserved.
½ m₁u₁² + ½ m₂u₂² = ½ m₁v₁² + ½ m₂v₂²
m₁u₁² + m₂u₂² = m₁v₁² + m₂v₂²
(3.00) (0)² + (6.50) (3.50)² = (3.00) v₁² + (6.50) v₂²
79.625 = 3v₁² + 6.5v₂²
Two equations, two variables. Solve with substitution:
22.75 = 3v₁ + 6.5v₂
22.75 − 3v₁ = 6.5v₂
v₂ = (22.75 − 3v₁) / 6.5
79.625 = 3v₁² + 6.5v₂²
79.625 = 3v₁² + 6.5 ((22.75 − 3v₁) / 6.5)²
79.625 = 3v₁² + (22.75 − 3v₁)² / 6.5
517.5625 = 19.5v₁² + (22.75 − 3v₁)²
517.5625 = 19.5v₁² + 517.5625 − 136.5v₁ + 9v₁²
0 = 28.5v₁² − 136.5v₁
0 = v₁ (28.5v₁ − 136.5)
v₁ = 0 or 4.79
We know v₁ isn't 0, so v₁ = 4.79 m/s.
Solving for v₂:
v₂ = (22.75 − 3v₁) / 6.5
v₂ = 1.29 m/s