Group 1: +1
Group 2: +2
Group 13: +3
Group 14: +4
Group 15: -3
Group 16: +II
Group 17: -1
All scientists try to base their conclusions on data and measurements.
Answer and Explanation:
I think the thing that is wrong with this chemical equation is that there is 0 by the 2 instead of the letter O.
Other than that, everything would be balanced.
<em><u>#teamtrees #PAW (Plant And Water)</u></em>
Answer:
1. 25 moles water.
2. 41.2 grams of sodium hydroxide.
3. 0.25 grams of sugar.
4. 340.6 grams of ammonia.
5. 4.5x10²³ molecules of sulfur dioxide.
Explanation:
Hello!
In this case, since the mole-mass-particles relationships are studied by considering the Avogadro's number for the formula units and the molar mass for the mass of one mole of substance, we proceed as shown below:
1. Here, we use the Avogadro's number to obtain the moles in the given molecules of water:

2. Here, since the molar mass of NaOH is 40.00 g/mol, we obtain:

3. Here, since the molar mass of C6H12O6 is 180.15 g/mol:

4. Here, since the molar mass of ammonia is 17.03 g/mol:

5. Here, since the molar mass of SO2 is 64.06 g/mol:

Best regards!
Answer is: 79.8 grams of copper(II) sulfate.
N(CuSO₄) = 3.01·10²³; number of molecules.
n(CuSO₄) = N(CuSO₄) ÷ Na.
n(CuSO₄) = 3.01·10²³ ÷ 6.02·10²³ 1/mol.
n(CuSO₄) = 0.5 mol; amount of substance.
m(CuSO₄) = n(CuSO₄) · M(CuSO₄).
m(CuSO₄) = 0.5 mol · 159.6 g/mol.
m(CuSO₄) = 79.8 g; mass of substance.
M - molar mass.