Answer:
Its melting point is 17 °C.
Explanation:
- The melting point of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium.
<em>So, the melting point is 17 °C.</em>
And this is shown in the figure attached.
D represents ion-dipole forces that are stronger than the force C.
Explanation:
D represents the ion-dipole force.
C represents the H-bonding forces.
ion-dipole force is a force that is due to electrostatic attraction and has a dipole between an ion and a neutral molecule.
It is electrostatic in nature.
A hydrogen bond is the force between the hydrogen with the electro negative atom of one molecule, to electro negative atom of some other molecule. such as: O, F, N
Ion dipole force is stronger than the H-bonding.
H2S donates a proton, therefore it is a Brønsted-Lowry base; CH3NH2 accepts a proton, so it’s a Brønsted-Lowry base.
<h3>
Answer:</h3>
25.4 g CH₄
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
1.58 mol CH₄
<u>Step 2: Identify Conversions</u>
[PT] Molar Mass of C - 12.01 g/mol
[PT] Molar Mass of H - 1.01 g/mol
Molar Mass of CH₄ - 12.01 + 4(1.01) = 16.05 g/mol
<u>Step 3: Convert</u>
- Set up:
- Multiply/Divide:
<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
25.359 g CH₄ ≈ 25.4 g CH₄
because it can influence how frequently and sufficiently the particles collide depending on the space it has to do so, for example a large surface area would be have a slower rate of reaction and a lower temperature. (the rate of reaction in terms of concentration, it is diffused from high to low)