Answer:
2/3
Explanation:
In the case shown above, the result 2/3 is directly related to the fact that the speed of the rocket is proportional to the ratio between the mass of the fluid and the mass of the rocket.
In the case shown in the question above, the momentum will happen due to the influence of the fluid that is in the rocket, which is proportional to the mass and speed of the same rocket. If we consider the constant speed, this will result in an increase in the momentum of the fluid. Based on this and considering that rocket and fluid has momentum in opposite directions we can make the following calculation:
Rocket speed = rocket momentum / rocket mass.
As we saw in the question above, the mass of the rocket is three times greater than that of the rocket in the video. For this reason, we can conclude that the calculation should be done with the rocket in its initial state and another calculation with its final state:
Initial state: Speed = rocket momentum / rocket mass.
Final state: Speed = 2 rocket momentum / 3 rocket mass. -------------> 2/3
Answer:
a.
W
Explanation:
= temperature of the surface of sun = 5800 K
= Radius of the Sun = 7 x 10⁸ m
= Surface area of the Sun
Surface area of the sun is given as

= Emissivity = 1
= Stefan's constant = 5.67 x 10⁻⁸ Wm⁻²K⁻⁴
Using Stefan's law, Power output of the sun is given as

Answer:
Velocity
Explanation:
<u>Velocity</u> is the rate that an object moves in certain direction.
The work done by the gravitational force = 0
Given the mass of the box = 40 kg
The box is initially at rest.
Distance moved by the applied force = 5m
Force applied = 130 N
Co-efficient of friction between the box and floor = 0.3
The box is moved only in the horizontal direction by the applied force.
Gravitational force is applied in a direction perpendicular to the applied force. hence it doesn't do any work on the box.
Therefore, the work done by the gravitational force is zero.
Learn more about the gravitational force at brainly.com/question/862529
#SPJ4