1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pani-rosa [81]
3 years ago
6

3. A 40.0-kg wagon is towed up a hill inclined at 18.5 with respect to the horizontal. The tow rope is parallel to the incline a

nd has a tension of 140 N. Assume that the wagon starts from rest at the bottom of the hill, and neglect friction. How fast is the wagon going after moving 80.0 m up the hill?
Physics
1 answer:
inn [45]3 years ago
4 0
Force=tension-fg sin ∅
=140-mg sin 18.5
=140-124.35
=15.62N

a=f/m=15.62/40=0.39
now,
v²=u²+2as
=2×0.39×80
v²=62.4
v=7.8m/s
You might be interested in
A runner with a mass of 80kg accelerates from 0 to 9 m/s in 3 s find the net force
frosja888 [35]
So, first you find your acceleration which is 3m/s^2, using the acceleration formula.
Now set up your equation, F=ma, so put in the stuff, F=80kg·3m/s^2. Then solve your equation by multiplying, and you get F=240N, since newtons are your measurement.
Hope this helps
4 0
3 years ago
What will happen to the speed of an object if the net force is in the direction of the motion?
nata0808 [166]
The speed increases
6 0
3 years ago
Read 2 more answers
A bullet fired into a fixed target loses half of its velocity after penetrating 3 cm. How much further it will penetrate before
Darina [25.2K]

{\mathfrak{\underline{\purple{\:\:\: Given:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{First \: penetrating \: length\:(s_{1}) = 3 \: cm}

\\

{\mathfrak{\underline{\purple{\:\:\:To \:Find:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{Left \: Penetration \: length \: before  \: it \: comes \: to \: rest \:( s_{2} )}

\\

{\mathfrak{\underline{\purple{\:\:\: Calculation:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{Let \: Initial \: velocity   = v\:m/s} \\\\

\:\:\:\:\bullet\:\:\:\sf{Left \: velocity \: after \:  s_{1} \: penetration =  \dfrac{v}{2}  \:m/s} \\\\

\:\:\:\:\bullet\:\:\:\sf{s_{1} =  \dfrac{3}{100}  = 0.03 \: m}

\\

☯ As we know that,

\\

\dashrightarrow\:\: \sf{ {v}^{2}  =  {u}^{2} + 2as }

\\

\dashrightarrow\:\: \sf{  \bigg(\dfrac{v}{2} \bigg)^{2}  =  {v}^{2}   + 2a s_{1}}

\\

\dashrightarrow\:\: \sf{  \dfrac{ {v}^{2} }{4}  =  {v}^{2}  + 2 \times a \times 0.03  }

\\

\dashrightarrow\:\: \sf{ \dfrac{ {v}^{2} }{4}  -  {v}^{2}  = 0.06 \times a  }

\\

\dashrightarrow\:\: \sf{\dfrac{ -  3{v}^{2} }{4}  = 0.06 \times a  }

\\

\dashrightarrow\:\: \sf{a =  \dfrac{ - 3 {v}^{2} }{4 \times 0.06}  }

\\

\dashrightarrow\:\: \sf{ a =  \dfrac{ - 25 {v}^{2} }{2}\:m/s^{2} ......(1) }

\\

\:\:\:\:\bullet\:\:\:\sf{  Initial\:velocity=v\:m/s} \\\\

\:\:\:\:\bullet\:\:\:\sf{ Final \: velocity = 0 \: m/s }

\\

\dashrightarrow\:\: \sf{  {v}^{2}  =  {u}^{2}  + 2as}

\\

\dashrightarrow\:\: \sf{{0}^{2}  =  {v}^{2}  + 2 \times  \dfrac{ - 25 {v}^{2} }{2}  \times s  }

\\

\dashrightarrow\:\: \sf{ -  {v}^{2}  =  - 25 {v}^{2}  \times s  }

\\

\dashrightarrow\:\: \sf{  s =  \dfrac{ -  {v}^{2} }{ - 25 {v}^{2} }}

\\

\dashrightarrow\:\: \sf{  s =  \dfrac{1}{25} }

\\

\dashrightarrow\:\: \sf{ s = 0.04 \: m }

\\

☯ For left penetration (s₂)

\\

\dashrightarrow\:\: \sf{s =  s_{1} +  s_{2}  }

\\

\dashrightarrow\:\: \sf{  0.04 = 0.03 +  s_{2}}

\\

\dashrightarrow\:\: \sf{ s_{2} = 0.04 - 0.03 }

\\

\dashrightarrow\:\: \sf{s_{2} = 0.01 \: m = {\boxed{\sf{\purple{1 \: cm }}} }}

\\

\star\:\sf{Left \: penetration \: before  \: it \: come \: to \: rest \: is \:{\bf{ 1 \: cm}}} \\

4 0
2 years ago
A stuntman is being pulled along a rough road at a constant velocity by a cable attached to a moving truck. The cable is paralle
Alex73 [517]

Answer:

715 N

Explanation:

Since the system is moving at a constant velocity, the net force must be 0. The tension on the road is equal and opposite direction with the kinetic friction force created by the road and the stuntman.

Let g = 9.8 m/s2

Gravity and equalized normal force is:

N = P = mg = 107*9.8 = 1048.6 N

Kinetic friction force and equalized tension force on the rope is

T = F_{\mu} = N\mu = 1048.6 * 0.682 = 715.1452 N

6 0
2 years ago
What is true about X-rays and microwaves?
erma4kov [3.2K]
I believe the correct answer from the choices listed above is option C. X-rays have greater frequency than microwaves. In a electromagnetic spectrum, the order in increasing frequency is as follows:

radio waves,microwaves, terahertz radiation, infrared radiation, visible light, ultraviolet radiation,X-rays<span> and gamma </span>rays<span>.</span>
7 0
3 years ago
Other questions:
  • Which of the following activities is most likely to result in nutrient pollution? a. cutting down trees b. pouring motor oil dow
    15·2 answers
  • A cube with sides of area 22 cm2 contains a 21.2 nanoCoulomb charge. Find the flux of the electric field through the surface of
    13·1 answer
  • According to the solar nebular theory, a supernova triggered the collapse of a nebula, which began the formation of clumps of ga
    12·1 answer
  • 124.5 kilometers equals how many meters?​
    14·1 answer
  • Which statements are true? Science is a collection of facts that does not evolve. We have gained all the knowledge we can from s
    10·1 answer
  • A ball thrown horizontall at 22.2 m/s from the roof of a building lands 36.0m from the base of the building. How tall is the bui
    12·1 answer
  • As you brake your bicycle, your velocity changes from 20 m/s east to 10 m/s east in 5 seconds. What’s your acceleration?
    7·1 answer
  • In the human arm, the forearm and hand pivot about the elbow joint. Consider a simplified model in which the biceps muscle is at
    12·1 answer
  • Memories
    11·1 answer
  • Explain the 3 method of heat transfer<br>a. conduction<br>b. convection<br>c. radiation​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!