Explanation:
<em>an </em><em>eclipse </em><em>happens </em><em>when </em><em>one </em>
<em>astronomical </em><em>body </em><em>block </em><em>light </em>
<em>from </em><em>or </em><em>to </em><em>another</em><em>,</em><em> </em><em>the </em><em>moon </em><em>moves </em><em>into</em>
<em>the </em><em>shadow </em><em>of </em><em>earth </em><em>cast </em><em>by </em><em>sun</em><em>.</em><em>.</em><em>.</em><em> </em><em>In </em><em>a </em><em>solar </em>
<em>eclipse</em><em>,</em><em> </em><em>the </em><em>moon </em><em>passes </em><em>between </em><em>Earth </em>
<em>and </em><em>the </em><em>sun </em><em>stops </em><em>some </em><em>all </em><em>of </em><em>the </em><em>sun's </em><em>light</em>
<em>from </em><em>reaching </em><em>Earth </em>
With angular momentum quantum number l = 2. in units of ħ, the value of l will be 2.4494 h.
<h3>What is the angular momentum quantum number?</h3>
The total angular momentum quantum number in quantum mechanics parametrizes the total angular momentum of a particular particle by combining its orbital angular momentum and intrinsic angular momentum.
Given the angular momentum quantum number l = 2. in units of ħ. Therefore, the value of L can be written as,
L = √[l (l + 1)]
L = √[2 (2 + 1)]
L = √[2 (3)]
L = √6
L = 2.4494 h
Hence, With angular momentum quantum number l = 2. in units of ħ, the value of l will be 2.4494 h.
Learn more about Angular momentum quantum numbers here:
brainly.com/question/16725426
#SPJ4
Answer:
Explanation:
Given the magnitude of the forces, 7N and 2N, the minimum combining force acting on the forces are when the force's is acting in opposite direction.
Magnitude of the force in opposite direction is 7N - 5N = 2N
The maximum combining force occurs when they act in the same direction. Magnitude of the force in the same direction is 5N+7N = 12N
Hence the range of magnitude requires is 2N≤F≤12N
If the context is difficult to understand they want you to think hard to get what their trying to say and make you feel a certain way.
Answer:true
Explanation:
It takes the moon approximately a month to complete an orbit round the earth