1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Eva8 [605]
3 years ago
7

In an elastic head-on collision, a 0.60 kg cart moving at 5.0 m/s [W] collides with a 0.80 kg cart moving at 2.0 m/s [E]. The co

llision is cushioned by a spring (k = 1200 N/m).
a) Determine the velocity of each cart after the collision.
b) Determine the maximum compression of the spring.
Physics
1 answer:
labwork [276]3 years ago
7 0

Answer:

The answer is given below

Explanation:

u is the initial velocity, v is the final velocity. Given that:

m_1=0.6kg,u_1=-5m/s(moving \ west),m_2=0.8kg,u_2=2m/s,k=1200N/m

a)

The final velocity of cart 1 after collision is given as:

v_1=(\frac{m_1-m_2}{m_1+m_2})u_1+\frac{2m_2}{m_1+m_2}u_2\\  Substituting:\\v_1=\frac{0.6-0.8}{0.6+0.8} (-5)+\frac{2*0.8}{0.6+0.8}(2)= 5/7+16/7=3\ m/s

The final velocity of cart 2 after collision is given as:

v_2=(\frac{m_2-m_1}{m_1+m_2})u_2+\frac{2m_1}{m_1+m_2}u_1\\  Substituting:\\v_1=\frac{0.8-0.6}{0.6+0.8} (2)+\frac{2*0.6}{0.6+0.8}(-5)= 2/7-30/7=-4\ m/s

b) Using the law of conservation of energy:

\frac{1}{2}m_1u_1+ \frac{1}{2}m_2u_2=\frac{1}{2}m_1v_1+\frac{1}{2}m_2v_2+\frac{1}{2}kx^2\\x=\sqrt{\frac{m_1u_1+m_2u_2-m_1v_1-m_2v_2}{k}}\\ Substituting\ gives:\\x=\sqrt{\frac{0.6*(-5)^2+0.8*2^2-(0.6*3^2)-(0.8*(-4)^2)}{1200}}=\sqrt{0}=0\ cm

You might be interested in
When you go for a walk which of the following forces is paired with the force of friction on your shoe
Ann [662]

Answer:

static

Explanation:

static friction pushes in the direction you are walking.

7 0
3 years ago
An engineer is designing a runway. She knows that a plane, starting at rest, needs to reach a speed of 180mph at take-off. If th
kvv77 [185]

Answer:

The plane would need to travel at least 8,\!580\; {\rm ft} (8.58 \times 10^{3}\; {\rm ft}.)

The 10,\!000\; {\rm ft} runway should be sufficient.

Explanation:

Convert unit of the the take-off velocity of this plane to \rm ft\cdot s^{-1}:

\begin{aligned}v &= 180\; {\rm mph} \\ &= 180\; {\rm mi \cdot hrs^{-1}} \times \frac{1\; {\rm hrs}}{3600\; {\rm s}} \times \frac{5280\; {\rm ft}}{1\; {\rm mi}} \\ &= 264\; {\rm ft \cdot s^{-1}}\end{aligned}.

Initial velocity of the plane: u = 0\; {\rm ft \cdot s^{-1}}.

Take-off velocity of the plane v =264\; {\rm ft\cdot s^{-1}}.

Let x denote the distance that the plane travelled along the runway. Since acceleration is constant but unknown, make use of the SUVAT equation x = ((u + v) / 2) \, t.

Notice that this equation does not require the value of acceleration. Rather, this equation make use of the fact that the distance travelled (under constant acceleration) is equal to duration t times average velocity (u + v) / 2.

The distance that the plane need to cover would be:

\begin{aligned}x &= \left(\frac{u + v}{2}\right)\, t \\ &= \frac{0\; {\rm ft \cdot s^{-1}} + 264\; {\rm ft \cdot s^{-1}}}{2} \times 65.0\; {\rm s} \\ &= 8.58\times 10^{3}\; {\rm ft}\end{aligned}.

4 0
3 years ago
Acceleration toward the center of a curved path is called
Serggg [28]

Answer:

Centripetal acceleration.

Explanation:

Centripetal acceleration is a property of a body moving in a uniform circular path and it is directed radially towards the center of the circle in which body is rotating.

The force which causes this acceleration is centripetal force which is also directed towards the center of the circle and pulls the body towards its center.

It is calculated through following formula

a=v^2/r

where v is velocity and r is the radius of the circle.

7 0
3 years ago
How do the tension of the cord and the force of gravity affect a pendulum?
LuckyWell [14K]

Answer:

<em>Force of gravity may not affect a pendulum during its equilibrium state</em>. But  the gravity can affect the pendulum when a force occurs in any direction of the bob connected to the cord that makes a swing sideways. The gravity of pendulum never stops, it always accelerates. So the gravity affects the pendulum acceleration and speed.    

<em>Similarly the tension in the cord will not affect the pendulum</em><em> </em>but if change in the length of the pendulum while keeping other factors constant changes the length of the period of pendulum. longer pendulum swings with lower frequency than shorter pendulums.    


6 0
3 years ago
Read 2 more answers
Hi, Solve for λ<br> E=hc/λ
Paul [167]

Answer:

λ=hc/E

Explanation:

E=hc/λ

Eλ=hc

λ=hc/E

4 0
3 years ago
Other questions:
  • Which answer choice correctly describes the ball's kinetic and potential energy? Group of answer choices The ball has more poten
    8·1 answer
  • A wave has a frequency of 46 Hz and a wavelength of 1.7 meters. What is the speed of this wave?
    11·2 answers
  • Why do objects repel and attract?
    7·1 answer
  • What is measurement​
    5·1 answer
  • __ is the second most abundant element in Earth’s crust. It is found in ___, and ___; and in _ which is used to make pottery.
    13·1 answer
  • A baseball leaves a bat with a horizontal velocity of 20 m/s. In a time of 0.25 s, How far will it have traveled horizontally?
    13·1 answer
  • 16)
    13·1 answer
  • Can someone plz help me with this it be appreciated I’m confused
    15·1 answer
  • Write 3 major differences between a shadow and a image?
    9·2 answers
  • if a horse exerts a pulling force on a cart, is the reaction force the force of friction between the horse's feet and the road?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!