Answer:

Explanation:
According to Coulomb's law, the force of attraction between two point charges,
and
, separated by a distance
is given by

is a constant with a value of
.
When we substitute the values from the question,

This value is negative because it is in a direction towards the positive charge.
The work done in moving the electron from the nucleus is


This is negative because work is done on the electron, not by it.
Answer:
0.25
Explanation:
Magnification = image distance/object distance
mag = v/u.................. Equation 1
Given: f = -10 cm ( diverging lens) u = 30 cm.
Where can calculate for the value of v using
1/f = 1/u+1/v
make v the subject of the equation
v = fv/(u-f)..................... Equation 2
Substitute into equation 2
v = -30(10)/(30+10)
v = -300/40
v = -7.5 cm.
substituting into equation 1,
mag = 7.5/30
mag = 0.25
hence the magnification of the wretch = 0.25
Answer:
1800/300 = 6ropes
Explanation:
The engine weighs 1800N and the person exerts a force of 300N, so for him to lift the engine and exerting a force of 300N all through we divide the weight of the engine by the force exerted to know how many ropes are used. Which makes it 6 thereby each rope uses 300N to lift the engine.
A psychologist will need to have good linguistic intelligence in other to be successful.
<h3>Who is a Psychologist?</h3>
This is referred to as a professional who specializes in the handling of mental health challenges in individuals.
It is best for such professional to have a good linguistic intelligence as the right words being said to the patient will solve the problem thereby bringing in more success.
Read more about Linguistic intelligence here brainly.com/question/15360566
#SPJ1
Answer:

According to the Fleming's Left left hand rule we have higher potential on the right edge of the wing.
Explanation:
Given:
- velocity of plane,

- magnetic field,

- angle between velocity and magnetic field,

- span of the wing,

We know:



According to the Fleming's Left left hand rule we have higher potential on the right edge of the wing.