Answer:
The speed of the 11.5kg block after the collision is V≅4.1 m/s
Explanation:
ma= 4.8 kg
va1= 7.3 m/s
va2= - 2.5 m/s
mb= 11.5 kg
vb1= 0 m/s
vb2= ?
vb2= ( ma*va1 - ma*va2) / mb
vb2= 4.09 m/s ≅ 4.1 m/s
Thermal- transfer of heat thru space
Radiation- the average amount of energy of motion in the molecules of a substance
Thermometer- a thin glass tube with a bulb on one end that contains a liquid, usually mercury or colored alcohol
Brainly?
<span>The choices can be found elsewhere and as follows:
</span><span>a. they are so small that they stay close to the ground due to the attractive properties of charged soil particles.
b. they are easily carried by the wind.
c. they easily dissolve in liquid droplets.
d. it is easier for then to roll along the small crevices in the ground.</span><span>
</span>I think the correct answer from the choices listed above is option B. Only the smallest particles of soil can be displaced by suspension because they are so small that they are easily carried by the wind. Hope this answers the question. Have a nice day. Feel free to ask more questions.
Answer:

Explanation:
given,
J = 50 kg-m²
frequency, f = 20 Hz
time ,t = 5 s
we know,
angular velocity = 2 π f
ω = 2 π x 20
ω = 125.66 rad/s
now, angular acceleration calculation


α = 25.13 rad/s²
Torque given to the flywheel.



Torque of the given flywheel is equal to 
Answer:
Let's start by considering the ideal gas law:

where
p is the gas pressure
V is its volume
n is the number of moles
R is the gas constant
T is the absolute temperature
This equation can also be rewritten as

Now, if we consider a fixed amount of gas, this means that the number of moles (n) is constant. So we can rewrite the equation as

And therefore, if we consider a gas undergoing a certain transformation from 1 to 2, we can write

where 1 indicates the conditions of the gas at the beginning and 2 the conditions of the gas after the process. So, the change in pressure/temperature/volume of the gas can be found by using this equation.