E=Eq,
where F is the electrostatic force (or Coulomb force) exerted on a positive test charge q.
Answer:
hope this helps
Explanation:
solid particles are arranged according to the size of the object
while liquid particles are arranged how they move freely together in the object they are in.
while gas particles are arranged scatterly like they spread.
The final velocity of the block A will be 2.5 m/sec. The principal of the momentum conversation is used in the given problem.
<h3>What is the law of conservation of momentum?</h3>
According to the law of conservation of momentum, the momentum of the body before the collision is always equal to the momentum of the body after the collision.
In a given concern, mass m₁ is M, mass m₂ is 3M. Initial speed for the mass m₁ and m₂ will be u₁=5 and u₂=0 m/s respectively,
According to the law of conservation of momentum
Momentum before collision =Momentum after collision
m₁u₁+m₂u₂=(m₁+m₂)v
M×5+3M×0=[M+3M]v
The final velocity is found as;
V=51.25 m/s
The velocity of block A is found as;

Hence, the final velocity of the block A will be 2.5 m/sec.
To learn more about the law of conservation of momentum, refer;
brainly.com/question/1113396
#SPJ4
The only colours that are in the spectrum are red, orange, yellow, green, blue, indigo and violet. hope this helps!
Answer:

Explanation:
Consider the motion of the ball attached to string.
In triangle ABD

height gained by the ball is given as

= mass of the ball attached to string = 110 g
= speed of the ball attached to string just after collision
Using conservation of energy
Potential energy gained = Kinetic energy lost

Consider the collision between the two balls
= mass of the ball fired = 26 g
= initial velocity of ball fired before collision = ?
= final velocity of ball fired after collision = ?
using conservation of momentum

Using conservation of kinetic energy
