Answer:
F centripetal force (tension) = 275.9 N
Explanation:
Given data:
Mass = 1.50 kg
Radius = 0.520 m
Velocity of ball = 9.78 m/s
Tension = ?
Solution:
F centripetal force (tension) = m.v² / R
F centripetal force (tension) = 1.50 kg . (9.78 m/s)² / 0.520 m
F centripetal force (tension) = 1.50 kg . 95.65 m²/s² / 0.520 m
F centripetal force (tension) = 143.5 kg. m²/s² / 0.520 m
F centripetal force (tension) = 275.9 N
Answer:
MgCl₂+ Na₂CO₃ ==> MgCO₃ + NaCl
From a quick observation
You see that the right hand side of the eqn is deficient of Sodium and Chlorine
Simply Add a Coefficient of 2 to NaCl to balance it with the left.
Your answer now becomes
MgCl₂ + Na₂CO₃ ==> MgCO₃ + 2NaCl.✅
The correct option is B. To increase the production of ammonia, you have to increase the pressure of the system. Increase in pressure will result in increased production of ammonia because this will drive the chemical reaction forward.
I think that work is being done on the books because they are being moved to their proper location and they will be sorted properly rather than lying on a table. Without lifting or carrying, you could sort the books by their genre or title name on the bookshelf so it will be sorted much more efficiently.
I’m not sure if this is the answer you are looking for but I hope it helps :)
Answer:
The temperature remains
Explanation:
The temperature of a boiling substance remains the same because the extra energy is used in phase transition, that is to break the bonds between the molecules that hold them close together in the liquid state. With increased energy the molecules gain enough kinetic energy to overcome inter-molecular forces and change state from liquid to gas