1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andre45 [30]
3 years ago
14

Scenario

Physics
1 answer:
Anvisha [2.4K]3 years ago
5 0

Answer:

1) t = 23.26 s,  x = 8527 m, 2)   t = 97.145 s,  v₀ = 6.4 m / s

Explanation:

1) First Scenario.

After reading your extensive problem, we are going to solve it, for this exercise we must use the parabolic motion relationships. Let's carry out an analysis of the situation, for deliveries the planes fly horizontally and we assume that the wind speed is zero or very small.

Before starting, let's reduce the magnitudes to the SI system

         v₀ = 250 miles/h (5280 ft / 1 mile) (1h / 3600s) = 366.67 ft/s

         y = 2650 m

Let's start by looking for the time it takes for the load to reach the ground.

         y = y₀ + v_{oy} t - ½ g t²

in this case when it reaches the ground its height is zero and as the plane flies horizontally the vertical speed is zero

         0 = y₀ + 0 - ½ g t2

          t = \sqrt{ \frac{2y_o}{g} }

          t = √(2 2650/9.8)

          t = 23.26 s

this is the horizontal scrolling time

          x = v₀ t

          x = 366.67  23.26

          x = 8527 m

the speed at the point of arrival is

         v_y = v_{oy} - g t = 0 - gt

         v_y = - 9.8 23.26

         v_y = -227.95 m / s

Module and angle form

        v = \sqrt{v_x^2 + v_y^2}

         v = √(366.67² + 227.95²)

        v = 431.75 m / s

         θ = tan⁻¹ (v_y / vₓ)

         θ = tan⁻¹ (227.95 / 366.67)

         θ = - 31.97º

measured clockwise from x axis

We see that there must be a mechanism to reduce this speed and the merchandise is not damaged.

2) second scenario. A catapult located at the position x₀ = -400m y₀ = -50m with a launch angle of θ = 50º

we look for the components of speed

           cos θ = v₀ₓ / v₀

           sin θ = v_{oy} / v₀

            v₀ₓ = v₀ cos θ

            v_{oy} = v₀ sin θ

we look for the time for the arrival point that has coordinates x = 0, y = 0

            y = y₀ + v_{oy} t - ½ g t²

            0 = y₀ + vo sin θ t - ½ g t²

            0 = -50 + vo sin 50 t - ½ 9.8 t²

            x = x₀ + v₀ₓ t

            0 = x₀ + vo cos θ t

            0 = -400 + vo cos 50 t

podemos ver que tenemos un sistema de dos ecuación con dos incógnitas

          50 = 0,766 vo t – 4,9 t²

          400 =   0,643 vo t

resolved

          50 = 0,766 ( \frac{400}{0.643 \ t}) t – 4,9 t²

          50 = 476,52 t – 4,9 t²

          t² – 97,25 t + 10,2 = 0

we solve the quadratic equation

         t = [97.25 ± \sqrt{97.25^2 - 4 \ 10.2}] / 2

         t = 97.25 ±97.04] 2

         t₁ = 97.145 s

         t₂ = 0.1 s≈0

the correct time is t1 the other time is the time to the launch point,

         t = 97.145 s

let's find the initial velocity

         x = x₀ + v₀ cos 50 t

         0 = -400 + v₀ cos 50 97.145

         v₀ = 400 / 62.44

         v₀ = 6.4 m / s

You might be interested in
What magnitude charge creates a 1.0 n/c electric field at a point 1.0 m away?
Stolb23 [73]

Answer:

1.1\cdot 10^{-10}C

Explanation:

The electric field produced by a single point charge is given by:

E=k\frac{q}{r^2}

where

k is the Coulomb's constant

q is the charge

r is the distance from the charge

In this problem, we have

E = 1.0 N/C (magnitude of the electric field)

r = 1.0 m (distance from the charge)

Solving the equation for q, we find the charge:

q=\frac{Er^2}{k}=\frac{(1.0 N/c)(1.0 m)^2}{9\cdot 10^9 Nm^2c^{-2}}=1.1\cdot 10^{-10}C

8 0
3 years ago
A particle moves along the curve below. y = sqrt(1 + x^3) As it reaches the point (2, 3), the y-coordinate is increasing at a ra
blagie [28]

Answer:7 cm/s

Explanation:

Given

Particle move along curve

y=\sqrt{1+x^3}

As it reaches the (2,3) its y coordinate is increasing at 14 cm/s

Differentiating y w.r.t time

\frac{\mathrm{d} y}{\mathrm{d} t}=\frac{3x^2}{2\sqrt{1+x^3}}\times \frac{\mathrm{d} x}{\mathrm{d} t}

Now at (2,3)

\frac{\mathrm{d} y}{\mathrm{d} t}=\frac{3\cdot 2^2}{2\sqrt{1+2^3}}\times \frac{\mathrm{d} x}{\mathrm{d} t}

14=\frac{3\times 4}{2\times \sqrt{9}}\times \frac{\mathrm{d} x}{\mathrm{d} t}

\frac{\mathrm{d} x}{\mathrm{d} t}=7 cm/s

7 0
3 years ago
A student needs to travel a total of 400 miles to reach his vacation destination . if he drives at an average speed of 50 mph ho
Arte-miy333 [17]

Answer:

The answer is 8 hours.

Explanation:

M : H

50 : 1

400 : X

400 * 1 = 50 x

400 / 50 = 8

8 0
3 years ago
Read 2 more answers
A 20 cm-radius ball is uniformly charged to 71 nC.
artcher [175]

Answer:

Part a)

\rho = 2.12\mu C/m^3

Part b)

q_1 = 1.11 nC

q_2 = 8.88 nC

q_3 = 71 nC

Part c)

E_1 = 3996 N/C

E_2 = 7992 N/C

E_3 = 15975 N/C

Explanation:

Part a)

As we know that charge density is the ratio of total charge and total volume

So here the volume of the charge ball is given as

V = \frac{4}{3}\pi R^3

V = \frac{4}{3}\pi(0.20)^3

V = 0.0335 m^3

now the charge density of the ball is given as

\rho = \frac{71 nC}{0.0335} = 2.12\mu C/m^3

Part b)

Now the charge enclosed by the surface is given as

q = \rho V

at radius of 5 cm

q = (2.12 \mu C/m^3)(\frac{4}{3}\pi(0.05)^3

q = 1.11 nC

at radius of 10 cm

q = (2.12 \mu C/m^3)(\frac{4}{3}\pi(0.10)^3

q = 8.88 nC

at radius of 20 cm

q = 71 nC

Part c)

As we know that electric field is given as

E = \frac{kq}{r^2}

so we have electric field at r = 5 cm

E_1 = \frac{(9\times 10^9)(1.11 nC)}{0.05^2}

E_1 = 3996 N/C

electric field at r = 10 cm

E_2 = \frac{(9\times 10^9)(8.88 nC)}{0.10^2}

E_2 = 7992 N/C

electric field at r = 20 cm

E_3 = \frac{(9\times 10^9)(71 nC)}{0.20^2}

E_3 = 15975 N/C

3 0
3 years ago
What is the form of energy that is produced in all energy transformations?
Damm [24]

Answer: Long Answer...

Explanation: Most of the time, chemical energy is released in the form of heat, and this transformation from chemical energy to heat, or thermal energy, is called an exothermic reaction. Next, there are two main types of mechanical energy: kinetic energy and potential energy.

5 0
3 years ago
Other questions:
  • explain the main reasons why pressure and temperature play a critical role in the stability of gas hydrates. Name two situations
    7·1 answer
  • If the absolute value of the price elasticity of demand for DVD movies is 0.8 then the elasticity of demand of the DVD for the m
    8·1 answer
  • Two trains travel toward each other on the same track, beginning 100 miles apart. One train travels at 40 miles per hour; the ot
    10·2 answers
  • A speed skater goes around a turn with a 31 m radius. The skater has a speed of 14 m/s and experiences a centripetal force of 46
    5·1 answer
  • Can someone please help me with part a and d
    5·2 answers
  • A panpipe is made of five pipes. The longest pipe is 25 centimeters long
    6·1 answer
  • A 6.5 kg rock thrown down from a 120m high cliff with initial velocity 18 m/s down. Calculate
    6·1 answer
  • An electric filament lamp is connected to a power supply and switched on.
    11·1 answer
  • How efficient is a pulley system if an operator has to pull 2.5m of rope to lift a 250 N pail of water a distance of 4.5 m?
    6·1 answer
  • What ate the effects of gravitional force<br>​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!