Answer:
Bind it to a large protein
Explanation:
An antigen is a molecule that binds to Ag-specific receptors, but cannot necessarily induce an immune response in the body by itself. Antigens are proteins , peptides (amino acid chains) and
polysaccharides (chains of monosaccharides/simple sugars) but
lipids and nucleic acids become antigens only when combined with proteins and polysaccharides. [4] In general, saccharides and lipids (as opposed to peptides) qualify as antigens but not as immunogens since they cannot elicit an immune response on their own. Furthermore, for a peptide to induce an immune response it must be a large enough size, thus binding to proteins
Naw! Common sense should be common which is why it's called common sense...
Answer:
1.10134 * 10⁻⁹m⁻¹
Explanation:
K = 680Nm⁻¹
μ = ?
μ = (m₁ + m₂) / m₁m₂
compound = CO
C = 12.0 g/mol = 0.012kg/mol
O = 16.0g/mol = 0.016kg/mol
μ = (m₁ + m₂) / m₁m₂
μ = (0.012 + 0.016) / (0.012*0.016) = 145.83
v = 1/2πc * √(k/μ)
ν = 1/ 2*3.142* 3.0*10⁸ * √(630/145.83)
v = 5.30*10⁻¹⁰ * 2.078
v = 1.10134*10⁻⁹m⁻¹
Answer:
I1 = ε/R1
I2 = ε/R2
I3 = ε/R3
Explanation:
From the image, we see that the resistors are connected in parallel. This means that the voltage passing through them is the same.
Now, formula for current is; I = V/R
In this case, V which is voltage is denoted by ε.
Thus;
I1 = ε/R1
I2 = ε/R2
I3 = ε/R3
Answer:
13,750 N
Yes
Explanation:
Given:
v₀ = 90 km/h = 25 m/s
v = 0 m/s
t = 4 s
Find: a and Δx
a = Δv / Δt
a = (0 m/s − 25 m/s) / (4 s)
a = -6.25 m/s²
F = ma
F = (2200 kg) (-6.25 m/s²)
F = -13,750 N
Δx = ½ (v + v₀) t
Δx = ½ (0 m/s + 25 m/s) (4 s)
Δx = 50 m