The velocity of the boat after the package is thrown is 0.36 m/s.
<h3>
Final velocity of the boat</h3>
Apply the principle of conservation of linear momentum;
Pi = Pf
where;
- Pi is initial momentum
- Pf is final momentum
v(74 + 135) = 15 x 5
v(209) = 75
v = 75/209
v = 0.36 m/s
Thus, the velocity of the boat after the package is thrown is 0.36 m/s.
Learn more about velocity here: brainly.com/question/6504879
#SPJ1
Answer: The electric field is: a) r<a , E0=; b) a<r<b E=ρ (r-a)/εo;
c) r>b E=ρ b (b-a)/r*εo
Explanation: In order to solve this problem we have to use the Gaussian law in diffrengios regions.
As we know,
∫E.dr= Qinside/εo
For r<a --->Qinside=0 then E=0
for a<r<b er have
E*2π*r*L= Q inside/εo in this case Qinside= ρ.Vol=ρ*2*π*r*(r-a)*L
E*2π*r*L =ρ*2*π*r* (r-a)*L/εo
E=ρ*(r-a)/εo
Finally for r>b
E*2π*r*L =ρ*2*π*b* (b-a)*L/εo
E=ρ*b* (b-a)*/r*εo
The effective acceleration or deceleration due to gravity depends on the inclined angle of the track relative to ground; the steeper the slope is the greater the effective acceleration.
The normal stress follows the formula written below:
σ = F/A
There are two types of stress, axial and tangential. Since we are only given with the dimension of the radius (and not the length), the possible stress is axial. So, the area is,
A = πr² = π(0.75 in)² = 1.767 in²
So,
σ = F/A = 500 lb/1.767 in² = <em>282.94 psi</em>