Answer:
Strong Positive Linear Line Correlation
Explanation:
According to the diagram, there is a strong positive linear line correlation between velocity and distance of galaxies. Hubble showed that galaxies are receding away from people with a velocity that is proportional to their distance from people more distant galaxies recede faster than nearby galaxies.
About the diagram: Velocity is the distance relation among extra-galactic nebulae. Radial velocities is corrected for solar motion, are plotted against distances estimated from involved stars and mean luminosities of nebulae in a cluster. The black discs and full line represent the solution for solar motion by using the nebulae individually; the circles and broken line represent the solution combining the nebulae into groups; the cross represents the mean velocity corresponding to the mean distance of 22 nebulae whose distances could not be estimated individually.
N= energy efficiency pout means output and pin means input the reason this would show efficiency is because your output should be greater then your input and because depending on how small your number is after your division will tell you how efficient it is you want a big number.
<span>Ans: The source Address field specifies the station that sends the frame.
The format of an Ethernet frame includes a destination address at the beginning which contains the address of the device which is sending the frame. And, the source address tells us which station the information is received from. </span>
The example of Newton's second law is that a runner accelerates at a rate of 1 meter per second per second during the race. The correct answer is C.
Given Information:
Frequency of horn = f₀ = 440 Hz
Speed of sound = v = 330 m/s
Speed of bus = v₀ = 20 m/s
Answer:
Case 1. When the bus is crossing the student = 440 Hz
Case 2. When the bus is approaching the student = 414.9 Hz
Case 3. When the bus is moving away from the student = 468.4 Hz
Explanation:
There are 3 cases in this scenario:
Case 1. When the bus is crossing the student
Case 2. When the bus is approaching the student
Case 3. When the bus is moving away from the student
Let us explore each case:
Case 1. When the bus is crossing the student:
Student will hear the same frequency emitted by the horn that is 440 Hz.
f = 440 Hz
Case 2. When the bus is approaching the student
f = f₀ ( v / v+v₀ )
f = 440 ( 330/ 330+20 )
f = 440 ( 330/ 350 )
f = 440 ( 0.943 )
f = 414.9 Hz
Case 3. When the bus is moving away from the student
f = f₀ ( v / v+v₀ )
f = 440 ( 330/ 330-20 )
f = 440 ( 330/ 310 )
f = 440 ( 1.0645 )
f = 468.4 Hz