Answer:
The molarity of urea in this solution is 6.39 M.
Explanation:
Molarity (M) is <em>the number of moles of solute in 1 L of solution</em>; that is

To calculate the molality, we need to know the number of moles of urea and the volume of solution in liters. We assume 100 grams of solution.
Our first step is to calculate the moles of urea in 100 grams of the solution,
using the molar mass a conversion factor. The total moles of 100g of a 37.2 percent by mass solution is
60.06 g/mol ÷ 37.2 g = 0.619 mol
Now we need to calculate the volume of 100 grams of solution, and we use density as a conversion factor.
1.032 g/mL ÷ 100 g = 96.9 mL
This solution contains 0.619 moles of urea in 96.9 mL of solution. To express it in molarity, we need to calculate the moles present in 1000 mL (1 L) of the solution.
0.619 mol/96.9 mL × 1000 mL= 6.39 M
Therefore, the molarity of the solution is 6.39 M.
<h2>The answer is option b "free energy is zero"</h2>
Explanation
- The reaction that has negative free energy are called exergonic reactions that means the reactants have more free energy than the product formed.
- The reaction that has positive free energy are called endergonic reactions that means the final state or the products formed have more free energy than the initial state or the reactants.
- The reaction that has zero free energy occurs when the free energy of both reactants and the products are same hence the rate of formation of products and reactants are equal.
- Therefore, when reactants and products are being formed at an equal rate the free energy is zero.
Answer:
I think B would be alcohol but A I'm not to sure
Answer: This is an oxidation-reduction (redox) reaction:
3 C-II - 12 e- → 3 CII (oxidation)
4 CrVI + 12 e- → 4 CrIII (reduction)
C2H5OH is a reducing agent, K2Cr2O7 is an oxidizing agent.
Answer:
6.022 x 1023 molecules = 1 Mole O2 = 22.4L
3.022 x 1023 molecules = 1/2 Mole O2 = 11.2L
The answer is 11.2 Litres
Explanation: