Some properties to differentiate between the minerals include:
Ductility
Malleability
Luster
Particle Size
Ability to react with chemicals
etc....
The total number of ions in 38.1 g of SrF₂ is 5.479 x 10²³.
<h3>What are ions?</h3>
Ions are the elements with a charge on them. It happens when they share electrons with other atoms to form a compound.
We have to calculate the total number of ions in 38.1 g of .
The molar mass of SrF₂ = 125.62 g/mol
The number of moles = 38.1 g of 1.0 mol / 125.62 = 0.30329 moles
Given that, total moles of SrF₂ ions in = 1.0 mol of + 2.0 moles of = 3.0 moles
Total moles of ions in 0.30329 moles of
= (0.30329 moles of SrF₂) x 3.0 / 1.0 = 0.90988 mol ions
We know that,
1.0 mole of ions = 6.023 x 10²³ ions
Thus, the number of total ions = ( 0.90988 mol ions) x 6.023 x 10²³ / 1.0 mol = 5.479 x 10²³ ions
Thus, the number of ions is in 38.1 g of 5.479 x 10²³ ions
To learn more about ions, refer to the link:
brainly.com/question/14295820
#SPJ4
Answer:
2KMnO4(aq) + 16HCl(aq) ------> 2MnCl2(aq) + 2KCl(aq) + 8H2O(l) + 5Cl2(g)
Explanation:
Chlorine is a diatomic halogen gas known for its greenish-yellow colour. It has a pungent smell and is only moderately soluble in water.
It is a very reactive gas and is never found in free state in nature.
Chlorine can be prepared in the laboratory by oxidation of hydrochloric acid using KMnO4 as follows;
2KMnO4(aq) + 16HCl(aq) ------> 2MnCl2(aq) + 2KCl(aq) + 8H2O(l) + 5Cl2(g)
The set up does not need to be heated.
<u>Answer:</u>
<u>For a:</u> The chemical equation for the dissolution of sodium carbonate is 
<u>For b:</u> The net acid-base reaction is 
<u>Explanation:</u>
Dissolution reaction is defined as the reaction in which a solid compound gets dissolved in water to form aqueous solution.
The chemical equation for the dissolution of sodium carbonate follows:

Ionization reaction is defined as the reaction in which an ionic compound dissociates into its ions when dissolved in aqueous solution.
The chemical equation for the ionization of sodium carbonate follows:

Now, the anion formed which is
reacts with water to form conjugate acid.
The chemical equation for the reaction of anion with water follows:

Hence, the net acid-base reaction of the anion formed and water is written above.