Answer:
equal to M
Explanation:
The mass of the fully melted mass and the initial solid will be the same. So, the mass of the melt is equal to M.
Mass is the amount of matter contained within a substance. Since only the phase changed and the amount of matter is still the same, the mass of the molten phase and the solid phase will remain the same.
We are correct to say that in the heating process no mass was destroyed or added in melting the solid.
A simple phase change that preserved the mass only occurred.
Answer:
0.17 moles
Explanation:
In the elements of the periodic table, the atomic mass = molar mass. <u>Ex:</u> Atomic mass of Carbon is 12.01 amu which means molar mass of Carbon is also 12.01g/mol.
In order to find the # of moles in a 12 g sample of NiC-12, we will need to multiply the number of each atom by its molar mass and then add the masses of both Nickel and C-12 found in the periodic table:
- Molar Mass of Ni (Nickel): 58.69 g/mol
- Molar Mass of C (Carbon): 12.01 g/mol
Since there's just one atom of both Carbon and Nickel, we just add up the masses to find the molar mass of the whole compound of NiC-12.
- 58.69 g/mol of Nickel + 12.01 g/mol of Carbon = 70.7 g/mol of NiC-12
There's 12g of NiC-12, which is less than the molar mass of NiC-12, so the number of moles should be less than 1. In order to find the # of moles in NiC-12, we need to do some dimensional analysis:
- 12g NiC-12 (1 mol of NiC-12/70.7g NiC-12) = 0.17 mol of NiC-12
- The grams cancel, leaving us with moles of NiC-12, so the answer is 0.17 moles of NiC-12 in a 12 g sample.
<em>P.S. C-12 or C12 just means that the Carbon atom has an atomic mass of 12amu and a molar mass of 12g/mol, or just regular carbon.</em>
Answer:... I'm sorry.. I think you're missing something
Explanation:
Answer:
91kj/mol;no
Explanation:
Took this before I gotchu.
Answer:
There are total 8 bonding electrons 6 frm the both Carbons and 2 from both hydrogens.
Explanation: