Explanation:
It is given that,
The time period of artificial satellite in a circular orbit of radius R is T. The relation between the time period and the radius is given by :

The radius of the orbit in which time period is 8T is R'. So, the relation is given by :



So, the radius of the orbit in which time period is 8T is 4R. Hence, this is the required solution.
Answer:
The answer to your question is 122.4 g of O₂
Explanation:
Data
mass of O₂ = ?
moles of H₂O = 7.65
Process
1.- Write the balanced chemical reaction
2H₂O ⇒ 2H₂ + O₂
2.- Convert the moles of H₂O to grams
molar mass of H₂O = 2 + 16 = 18 g
18 g of H₂O ---------------- 1 mol
x ----------------- 7.65 moles
x = (7.65 x 18) / 1
x = 137.7 g H₂O
3.- Calculate the grams of O₂
36 g of H₂O -------------------- 32 g of O₂
137.7 g of H₂O ------------------- x
x = (32 x 137.7) / 36
x = 122.4 g of O₂
Answer:
F1+ is the one that violates the octet rule
Explanation:
F1+ does not end up having 8 electrons in its valence shell, and there for violates the octet rule, for an atom to comply with the octet rule its charge must reflect the number of electrons it needs to gain or lose to make an octet, but F1+'s charge does not reflect the number of electrons it needs to be stable or have an electron configuration of a noble gas
It's b. hydrogen bonds between water molecules
When iron loses the 2 4s electrons, it attains a valency of +2. Sometimes, iron will also lose one of the paired electrons from 3d orbital, leaving the entire 3d orbital filled with unpaired electrons (which provides a more stable configuration). In this case, its valency will be +3.