The answer will be 25.92 L for 17.0 c
The oxidation state of the elements in the compounds are:
CoH₂:
FeBr₃:
<h3>What is the oxidation states of the elements in the given compounds?</h3>
The oxidation states of the elements in each of the given compounds is determined as follows:
Cobalt dihydride, CoH₂
Co = +2
H = -1
Iron (iii) bromide, FeBr₃
Fe = +3
Br = -1
In conclusion, the oxidation state of the elements are charges they have in the compound.
Learn more about oxidation state at: brainly.com/question/27239694
#SPJ1
The reaction between the reactants would be:
CH₃NH₂ + HCl ↔ CH₃NH₃⁺ + Cl⁻
Let the conjugate acid undergo hydrolysis. Then, apply the ICE approach.
CH₃NH₃⁺ + H₂O → H₃O⁺ + CH₃NH₂
I 0.11 0 0
C -x +x +x
E 0.11 - x x x
Ka = [H₃O⁺][CH₃NH₂]/[CH₃NH₃⁺]
Since the given information is Kb, let's find Ka in terms of Kb.
Ka = Kw/Kb, where Kw = 10⁻¹⁴
So,
Ka = 10⁻¹⁴/5×10⁻⁴ = 2×10⁻¹¹ = [H₃O⁺][CH₃NH₂]/[CH₃NH₃⁺]
2×10⁻¹¹ = [x][x]/[0.11-x]
Solving for x,
x = 1.483×10⁻⁶ = [H₃O⁺]
Since pH = -log[H₃O⁺],
pH = -log(1.483×10⁻⁶)
<em>pH = 5.83</em>
Answer:
b. Its concentration is half that of the chloride ion
Explanation:
As the calcium chloride formula is CaCl2
CaCl2 <--> Ca + 2 Cl-
Answer:
C8H18(g) + 12.5O2(g) -> __8__CO2(g) + 9H2O(g) + heat
CH4(g) + _2___O2(g) -> ____CO2(g) + _2___H2O(g) + heat
C3H8(g) + _5___O2(g) -> _3___CO2(g) + __4__H2O(g) + heat
2C6H6(g) + __15__O2(g) -> __12__CO2(g) + __6__H2O(g) + heat
Explanation:
I hope it helps!