Okay so,
1) Translation- show the RNA strand attatching to a DNA strand with the complimentary base pairs. introns are spliced
2) mRNA leaves the cell and joins with a ribosome
3) Transcription - tRNA (clover shaped) reads each codon (triplets) which each code for an amino acid. The stop codons on the end tell the tRNA that the chain is finished
4) the sequence forms the primary structure (all peptide bonds) which determines the shape of the secondary (hyrdogen and peptide) and hence determines the shape of the tertiary structure of a protein (ionic, hydrogen, disulfide bridges and hydrophibic interactions)
Hope this helps :)
Passive prostheses are self-regulating, as shown in the first answer option.
We can arrive at this answer because:
- Passive prostheses are devices used to replace parts of the body that were lost by an incident.
- These prostheses are very useful to establish balance or the aesthetics of the body, but they have no articulations and no movement mechanism, being static.
This limitation allows passive prostheses not to need external regulation and to be self-regulated by fitting the body parts.
You can find more information about articulations and their effects on the link:
brainly.com/question/5847359?referrer=searchResults
Answer:
Data obtained can't be accurate.
Explanation:
A beaker can't be used for measuring the volume of a liquid because they did not calculate volume of a liquid accurately and precisely. The marks present on the beaker are not accurate, it is just an estimate so by measuring the volume of any liquid using beaker give us a false data so that's why beaker are not used for the measurement of a volume.
Answer:
320 g
Step-by-step explanation:
The half-life of Co-63 (5.3 yr) is the time it takes for half of it to decay.
After one half-life, half (50 %) of the original amount will remain.
After a second half-life, half of that amount (25 %) will remain, and so on.
We can construct a table as follows:
No. of Fraction Mass
half-lives t/yr Remaining Remaining/g
0 0 1
1 5.3 ½
2 10.6 ¼
3 15.9 ⅛ 40.0
4 21.2 ¹/₁₆
We see that 40.0 g remain after three half-lives.
This is one-eighth of the original mass.
The mass of the original sample was 8 × 40 g = 320 g