Answer:
1.1 liters
1.2 liters
1.5 liters
Explanation:
Precision in data refers to how close the experimental values of an experiment are to one another irrespective of the true or accepted value. In other words, a set of values are said to be PRECISE if they are close to one another.
In this case, data was collected after conducting an experiment about the amount, in liters, of water a specific plant needs per month. However, according to the set of experimental values provided, only 1.1 litres, 1.2litres and 1.5litres are close to one another and, hence, are said to be PRECISE even if they are not close to the accepted value of 6litres.
According to Balance chemical equation,
N₂ + 3 H₂ → 2 NH₃
1 mole of Nitrogen reacts with 3 moles of Hydrogen to produce 2 mole of Ammonia.
It is known that i mole of any gas at standard temperature and pressure occupies 22.4 L of Volume. So, we can also say,
22.4 L (1 × 22.4) of Nitrogen gas (in question it is taken in excess) reacts with 67.2 L (22.4 × 3) of Hydrogen gas to produce 44.8 L (22.4 × 2) of Ammonia.
Result:
44.8 L is the correct answer.
Answer:
Option B. 2096.1 K
Explanation:
Data obtained from the question include the following:
Enthalpy (H) = +1287 kJmol¯¹ = +1287000 Jmol¯¹
Entropy (S) = +614 JK¯¹mol¯¹
Temperature (T) =.?
Entropy is related to enthalphy and temperature by the following equation:
Change in entropy (ΔS) = change in enthalphy (ΔH) / Temperature (T)
ΔS = ΔH / T
With the above formula, we can obtain the temperature at which the reaction will be feasible as follow:
ΔS = ΔH / T
614 = 1287000/ T
Cross multiply
614 x T = 1287000
Divide both side by 614
T = 1287000/614
T = 2096.1 K
Therefore, the temperature at which the reaction will be feasible is 2096.1 K
A. good conductors is not a characteristic of metals out of all the other followings.