No, I don’t think so. My reason being that some of these viruses are not harmful, an example is bacteriophage which kills bacteria.
<span>In order to solve this problem you must first make sure all your numbers are in like terms. From the density value you can see that it is grams per liter. The first conversion you must do in convert the 125.0 mL value to Liters which you would do by dividing by 1000 because 1 liter is equal to 1000 mL. 125.0 divided by 1000 is 0.125 Liter. Now you will use the density equation to solve. The density equation is density is equal to mass divided by volume. Plug in your known numbers for density and volume. Then solve for mass. So Density (1.269 g/l is equal to mass divided by volume (.125 Liter) You must rearrange the equation to multiple density by volume which is 1.269 times 0.125 which will give you 0.1586. Because the Liters cancel each other out, the answer's unit will be grams. Your final answer is 0.1586 grams.</span>
Homogeneous Reactions. At equilibrium, the rate of the forward and reverse reaction are equal, which is demonstrated by the arrows. The equilibrium constant, however, gives the ratio of the units (pressure or concentration) of the products to the reactants when the reaction is at equilibrium.
Answer:
Atomic mass of E is 128.24
Explanation:
- The percentage composition by mass of an element in a compound is given by dividing the mass of the element by the total mass of the compound and expressing it as a percentage.
- In this case; the compound Bi₂E₃
Percentage composition of bismuth = 52.07%
Percentage composition of E = 47.93%
Mass Bismuth in the compound is (2×208.9804) = 417.96 g
Therefore,
To calculate the atomic mass of E
52.07% = 417.96 g
47.93% = ?
= (47.93 × 417.96 ) ÷ 52.07 %
= 384.729
E₃ = 384.729
Therefore; E = 384.729 ÷ 3
= 128.24
The atomic mass of E is 128.24
Types of Metals (alkali earth metals and transitional metals)