Answer:
See explanation
Explanation:
TLC is a chromatographic method in which the solute is spotted on a plate and the plate is placed in an air tight chamber containing a solvent. The solvent is maintained below the level of the spot. The capillary movement of the solvent through the plate achieves the required separation.
If two spots have Rf values of 0.25 and 0.26 respectively and then the plate was removed from the developing chamber, subsequently, the residual solvent was allowed to evaporate from the plate, and then the plate was returned to the developing chamber.
It will be observed after the second development is complete that the new Rf values will be 0.50 and 0.52 respectively. It will just be as though the second chromatogram picked up from where the first chromatogram stopped.
<span>Let's assume
that the oxygen gas has ideal gas behavior.
Then we can use ideal gas formula,
PV = nRT</span>
Where, P is the pressure of the gas (Pa), V is the volume of the gas
(m³), n is the number of moles of gas (mol), R is the universal gas
constant ( 8.314 J mol⁻¹ K⁻¹) and T is temperature in Kelvin.
<span>
P = 2.2 atm = 222915 Pa
V = 21 L = 21 x 10</span>⁻³ m³
n = ?
R = 8.314 J mol⁻¹ K⁻¹
<span>
T = 87 °C = 360 K
By substitution,
</span>222915 Pa x 21 x 10⁻³ m³ = n x 8.314 J mol⁻¹ K⁻<span>¹ x 360 K
n
= 1.56</span><span> mol</span>
<span>
Hence, 1.56 moles of the oxygen gas are </span><span>
left for you to breath.</span><span>
</span>
Answer:
Explanation:
The acid level has changed
Kia's remaining water has a mass of 50g. You can set it up as a proportion knowing that 100ml of water has a mass of 100g and thus 50ml of water would weight 50g
Answer:
Bromine mollecules are held together by van der waals forces while a water molecule constitutes both van der waals forces and hydrogen bomnding
Explanation:
This makes the water molecule recquire more heat energy to break the bond thus a higher boiling point while bromine structure requires just litttle heat energy