Answer:
Second option 6.3 N at 162° counterclockwise from
F1->
Explanation:
Observe the attached image. We must calculate the sum of all the forces in the direction x and in the direction y and equal the sum of the forces to 0.
For the address x we have:

For the address and we have:

The forces
and
are known

We have 2 unknowns (
and b) and we have 2 equations.
Now we clear
from the second equation and introduce it into the first equation.

Then

Then we find the value of 

Finally the answer is 6.3 N at 162° counterclockwise from
F1->
Answer:
Explanation:
Given
Initial Moment of Inertia 
initial Spin 

Final Moment Moment of Inertia 
Conserving Angular momentum





Answer:
The distance the piece travel in horizontally axis is
L=3.55m
Explanation:





Now the angular velocity is the blade speed so:
assuming no air friction effects affect blade piece:
time for blade piece to fall to floor

Now is the same time the piece travel horizontally

blade piece travels HORIZONTALLY = (24.5)(0.397) = 9.73 m ANS
Answer:
The magnetic moment of a system measures the strength and the direction of its magnetism. The term itself usually refers to the magnetic dipole moment. Anything that is magnetic, like a bar magnet or a loop of electric current, has a magnetic moment. A magnetic moment is a vector quantity, with a magnitude and a direction. An electron has an electron magnetic dipole moment, generated by the electron's intrinsic spin property, making it an electric charge in motion. There are many different magnetic behavior including paramagnetism, diamagnetism, and ferromagnetism.
An interesting characteristic of transition metals is their ability to form magnets. Metal complexes that have unpaired electrons are magnetic. Since the last electrons reside in the d orbitals, this magnetism must be due to having unpaired d electrons. The spin of a single electron is denoted by the quantum number \(m_s\) as +(1/2) or –(1/2). This spin is negated when the electron is paired with another, but creates a weak magnetic field when the electron is unpaired. More unpaired electrons increase the paramagnetic effects. The electron configuration of a transition metal (d-block) changes in a coordination compound; this is due to the repulsive forces between electrons in the ligands and electrons in the compound. Depending on the strength of the ligand, the compound may be paramagnetic or diamagnetic.Explanation:
Answer:
m = 0.25
Explanation:
Given that,
Object distance, u = -15cm
Height of the object, h = 48
Focal length, f = cm
We need to find the magnification of the image.
Let v is the image distance. Using mirror's equation.

Magnification,

Hence, the magnification of the image is 0.25.