Answer:
a)Q=71.4 μ C
b)ΔV' = 10.2 V
Explanation:
Given that
C ₁= 8.7 μF
C₂ = 8.2 μF
C₃ = 4.1 μF
The potential difference of the battery, ΔV= 34 V
When connected in series
1/C = 1/C ₁ + 1/C₂ + 1/C₃
1/ C= 1/8.4 +1 / 8.4 + 1/4.2
C=2.1 μF
As we know that when capacitor are connected in series then they have same charge,Q
Q= C ΔV
Q= 2.1 x 34 μ C
Q=71.4 μ C
b)
As we know that when capacitor are connected in parallel then they have same voltage difference.
Q'= C' ΔV'
C'= C ₁+C₂+C₃ (For parallel connection)
C'= 8.4 + 8.4 + 4.2 μF
C'=21 μF
Q'= C' ΔV'
Q'=3 Q
3 x 71.4= 21 ΔV'
ΔV' = 10.2 V
Answer: The force needed is 140.22 Newtons.
Explanation:
The key assumption in this problem is that the acceleration is constant along the path of the barrel bringing the pellet from velocity 0 to 155 m/s. This means the velocity is linearly increasing in time.
The force exerted on the pellet is
F = m a
In order to calculate the acceleration, given the displacement d,

we will need to determine the time t it took for the pellet to make the distance through the barrel of 0.6m. That time can be determined using the average velocity of the pellet while traveling through the barrel. Since the velocity is a linear function of time, as mentioned above, the average is easy to calculate as:

This value can be used to determine the time for the pellet through the barrel:

Finally, we can use the above to calculate the force:

Approximately 0.4373 seconds
Speed of sound at 20 degree C is roughly 343 meters/second
Speed of light = 3x10^8 or 300,000,000 meters/second
at 150.0 feet away you set it up as:
150.0/343 - 150/3x10^8
150.0/343 = 0.43731778
150/3x10^8 = 5x10^-7 or 0.0000005
Subtract 0.43731778 - 0.0000005
Answer is 0.43731728
Rounding would be approx. 0.4373
The kinetic energy of an object is given by:
KE = 0.5mv²
KE = kinetic energy, m = mass, v = speed
Given values:
KE = 0.161J, v = 2.33m/s
Plug in and solve for m:
0.161 = 0.5m(2.33)²
m = 0.059kg
Answer:

Explanation:
Given


Required
Determine the distance at which the lighting struck
First, we need to determine the speed at which the lighting struck because the peed of sound varies with temperature.
At about 28C, the speed of sound is 346m/s
So, we have the following:


Distance is calculated as thus:



Divide by 1000 to get distance equivalent in kilometers


---- Approximated