Answer:
He could re read his answear.
Explanation:
Answer:
a) 4.04*10^-12m
b) 0.0209nm
c) 0.253MeV
Explanation:
The formula for Compton's scattering is given by:

where h is the Planck's constant, m is the mass of the electron and c is the speed of light.
a) by replacing in the formula you obtain the Compton shift:

b) The change in photon energy is given by:

c) The electron Compton wavelength is 2.43 × 10-12 m. Hence you can use the Broglie's relation to compute the momentum of the electron and then the kinetic energy.


The average kinetic energy of a gas particle is directly proportional to the temperature. An increase in temperature increases the speed in which the gas molecules move. All gases at a given temperature have the same average kinetic energy. Lighter gas molecules move faster than heavier molecules.
Teddyber continue to move forward because Newton law 1. moving object continue to move until something external make it to stop. no seat belt on teddy ber so only dashboard can make her stop. same if people in car and no seatbelt.
Sure, if the mortality (death) rate is even higher than the birth rate.