Answer:
a) Ka= 7.1 × 10⁻⁴; This is a weak acid because the acid is not completely dissociated in solution.
Explanation:
Step 1: Write the dissociation reaction for nitrous acid
HNO₂(aq) ⇄ H⁺(aq) and NO₂⁻(aq)
Step 2: Calculate the acid dissociation constant
Ka = [H⁺] × [NO₂⁻] / [HNO₂]
Ka = 0.022 × 0.022 / 0.68
Ka = 7.1 × 10⁻⁴
Step 3: Determine the strength of the acid
Since Ka is very small, nitrous acid is a weak acid, not completely dissociated in solution.
Explanation:
Moles of metal,
=
4.86
⋅
g
24.305
⋅
g
⋅
m
o
l
−
1
=
0.200
m
o
l
.
Moles of
H
C
l
=
100
⋅
c
m
−
3
×
2.00
⋅
m
o
l
⋅
d
m
−
3
=
0.200
m
o
l
Clearly, the acid is in deficiency ; i.e. it is the limiting reagent, because the equation above specifies that that 2 equiv of HCl are required for each equiv of metal.
So if
0.200
m
o
l
acid react, then (by the stoichiometry), 1/2 this quantity, i.e.
0.100
m
o
l
of dihydrogen will evolve.
So,
0.100
m
o
l
dihydrogen are evolved; this has a mass of
0.100
⋅
m
o
l
×
2.00
⋅
g
⋅
m
o
l
−
1
=
?
?
g
.
If 1 mol dihydrogen gas occupies
24.5
d
m
3
at room temperature and pressure, what will be the VOLUME of gas evolved?
Answer:
CaF2
Explanation:
Calcium fluoride is a solid formed by the chemical combination of Calcium (Ca) and Fluorine (F). Two molecules of fluorine (F2) and one molecule of Calcium (Ca) are needed to form the Calcium Fluoride molecule.
An ionic bond is formed between the Calcium and Fluorine atoms i.e. electrons are transferred from calcium atoms to fluorine atoms. The calcium ion is a cation with formula; Ca2+ while fluorine is an anion with formula; F-. Hence, it takes two molecules of Fluorine ion (F-) to form a relatively stable and neutral molecule with 1 molecule of Calcium ion (Ca2+).
Hello!
Find the Energy of the Photon by Planck's Equation, given:
E (photon energy) =? (in Joule)
h (Planck's constant) = 
f (radiation frequency) =
Therefore, we have:





I Hope this helps, greetings ... DexteR! =)